Do you want to publish a course? Click here

ALFWorld: Aligning Text and Embodied Environments for Interactive Learning

123   0   0.0 ( 0 )
 Added by Mohit Shridhar
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Given a simple request like Put a washed apple in the kitchen fridge, humans can reason in purely abstract terms by imagining action sequences and scoring their likelihood of success, prototypicality, and efficiency, all without moving a muscle. Once we see the kitchen in question, we can update our abstract plans to fit the scene. Embodied agents require the same abilities, but existing work does not yet provide the infrastructure necessary for both reasoning abstractly and executing concretely. We address this limitation by introducing ALFWorld, a simulator that enables agents to learn abstract, text based policies in TextWorld (C^ote et al., 2018) and then execute goals from the ALFRED benchmark (Shridhar et al., 2020) in a rich visual environment. ALFWorld enables the creation of a new BUTLER agent whose abstract knowledge, learned in TextWorld, corresponds directly to concrete, visually grounded actions. In turn, as we demonstrate empirically, this fosters better agent generalization than training only in the visually grounded environment. BUTLERs simple, modular design factors the problem to allow researchers to focus on models for improving every piece of the pipeline (language understanding, planning, navigation, and visual scene understanding).



rate research

Read More

We present Interactive Gibson Benchmark, the first comprehensive benchmark for training and evaluating Interactive Navigation: robot navigation strategies where physical interaction with objects is allowed and even encouraged to accomplish a task. For example, the robot can move objects if needed in order to clear a path leading to the goal location. Our benchmark comprises two novel elements: 1) a new experimental setup, the Interactive Gibson Environment (iGibson 0.5), which simulates high fidelity visuals of indoor scenes, and high fidelity physical dynamics of the robot and common objects found in these scenes; 2) a set of Interactive Navigation metrics which allows one to study the interplay between navigation and physical interaction. We present and evaluate multiple learning-based baselines in Interactive Gibson, and provide insights into regimes of navigation with different trade-offs between navigation path efficiency and disturbance of surrounding objects. We make our benchmark publicly available(https://sites.google.com/view/interactivegibsonenv) and encourage researchers from all disciplines in robotics (e.g. planning, learning, control) to propose, evaluate, and compare their Interactive Navigation solutions in Interactive Gibson.
We introduce BEHAVIOR, a benchmark for embodied AI with 100 activities in simulation, spanning a range of everyday household chores such as cleaning, maintenance, and food preparation. These activities are designed to be realistic, diverse, and complex, aiming to reproduce the challenges that agents must face in the real world. Building such a benchmark poses three fundamental difficulties for each activity: definition (it can differ by time, place, or person), instantiation in a simulator, and evaluation. BEHAVIOR addresses these with three innovations. First, we propose an object-centric, predicate logic-based description language for expressing an activitys initial and goal conditions, enabling generation of diverse instances for any activity. Second, we identify the simulator-agnostic features required by an underlying environment to support BEHAVIOR, and demonstrate its realization in one such simulator. Third, we introduce a set of metrics to measure task progress and efficiency, absolute and relative to human demonstrators. We include 500 human demonstrations in virtual reality (VR) to serve as the human ground truth. Our experiments demonstrate that even state of the art embodied AI solutions struggle with the level of realism, diversity, and complexity imposed by the activities in our benchmark. We make BEHAVIOR publicly available at behavior.stanford.edu to facilitate and calibrate the development of new embodied AI solutions.
There has been significant interest recently in learning multilingual word embeddings -- in which semantically similar words across languages have similar embeddings. State-of-the-art approaches have relied on expensive labeled data, which is unavailable for low-resource languages, or have involved post-hoc unification of monolingual embeddings. In the present paper, we investigate the efficacy of multilingual embeddings learned from weakly-supervised image-text data. In particular, we propose methods for learning multilingual embeddings using image-text data, by enforcing similarity between the representations of the image and that of the text. Our experiments reveal that even without using any expensive labeled data, a bag-of-words-based embedding model trained on image-text data achieves performance comparable to the state-of-the-art on crosslingual semantic similarity tasks.
One of the most challenging topics in Natural Language Processing (NLP) is visually-grounded language understanding and reasoning. Outdoor vision-and-language navigation (VLN) is such a task where an agent follows natural language instructions and navigates a real-life urban environment. Due to the lack of human-annotated instructions that illustrate intricate urban scenes, outdoor VLN remains a challenging task to solve. This paper introduces a Multimodal Text Style Transfer (MTST) learning approach and leverages external multimodal resources to mitigate data scarcity in outdoor navigation tasks. We first enrich the navigation data by transferring the style of the instructions generated by Google Maps API, then pre-train the navigator with the augmented external outdoor navigation dataset. Experimental results show that our MTST learning approach is model-agnostic, and our MTST approach significantly outperforms the baseline models on the outdoor VLN task, improving task completion rate by 8.7% relatively on the test set.
The fundamental problem in short-text classification is emph{feature sparseness} -- the lack of feature overlap between a trained model and a test instance to be classified. We propose emph{ClassiNet} -- a network of classifiers trained for predicting missing features in a given instance, to overcome the feature sparseness problem. Using a set of unlabeled training instances, we first learn binary classifiers as feature predictors for predicting whether a particular feature occurs in a given instance. Next, each feature predictor is represented as a vertex $v_i$ in the ClassiNet where a one-to-one correspondence exists between feature predictors and vertices. The weight of the directed edge $e_{ij}$ connecting a vertex $v_i$ to a vertex $v_j$ represents the conditional probability that given $v_i$ exists in an instance, $v_j$ also exists in the same instance. We show that ClassiNets generalize word co-occurrence graphs by considering implicit co-occurrences between features. We extract numerous features from the trained ClassiNet to overcome feature sparseness. In particular, for a given instance $vec{x}$, we find similar features from ClassiNet that did not appear in $vec{x}$, and append those features in the representation of $vec{x}$. Moreover, we propose a method based on graph propagation to find features that are indirectly related to a given short-text. We evaluate ClassiNets on several benchmark datasets for short-text classification. Our experimental results show that by using ClassiNet, we can statistically significantly improve the accuracy in short-text classification tasks, without having to use any external resources such as thesauri for finding related features.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا