No Arabic abstract
In this work, motivated by the fact that higher-dimensional theories predict the existence of black holes which differ from their four-dimensional counterpart, we analyse the geodesics and black hole shadow cast by a general non-extremal five-dimensional black hole. The system under consideration corresponds to the Chong-Cvetiv{c}-Lu-Pope (Phys. Rev.Lett.{bf 95}, 161301 (2005)), which has the Myers--Perry black hole as a limit.
We present the general exact solutions for non-extremal rotating charged black holes in the Godel universe of five-dimensional minimal supergravity theory. They are uniquely characterized by four non-trivial parameters, namely the mass $m$, the charge $q$, the Kerr equal rotation parameter $a$, and the Godel parameter $j$. We calculate the conserved energy, angular momenta and charge for the solutions and show that they completely satisfy the first law of black hole thermodynamics. We also study the symmetry and separability of the Hamilton-Jacobi and the massive Klein-Gordon equations in these Einstein-Maxwell-Chern-Simons-Godel black hole backgrounds.
In General Relativity, the spacetimes of black holes have three fundamental properties: (i) they are the same, to lowest order in spin, as the metrics of stellar objects; (ii) they are independent of mass, when expressed in geometric units; and (iii) they are described by the Kerr metric. In this paper, we quantify the upper bounds on potential black-hole metric deviations imposed by observations of black-hole shadows and of binary black-hole inspirals in order to explore the current experimental limits on possible violations of the last two predictions. We find that both types of experiments provide correlated constraints on deviation parameters that are primarily in the tt-components of the spacetimes, when expressed in areal coordinates. We conclude that, currently, there is no evidence for a deviations from the Kerr metric across the 8 orders of magnitudes in masses and 16 orders in curvatures spanned by the two types of black holes. Moreover, because of the particular masses of black holes in the current sample of gravitational-wave sources, the correlations imposed by the two experiments are aligned and of similar magnitudes when expressed in terms of the far field, post-Newtonian predictions of the metrics. If a future coalescing black-hole binary with two low-mass (e.g., ~3 Msun) components is discovered, the degeneracy between the deviation parameters can be broken by combining the inspiral constraints with those from the black-hole shadow measurements.
Causal concept for the general black hole shadow is investigated, instead of the photon sphere. We define several `wandering null geodesics as complete null geodesics accompanied by repetitive conjugate points, which would correspond to null geodesics on the photon sphere in Schwarzschild spacetime. We also define a `wandering set, that is, a set of totally wandering null geodesics as a counterpart of the photon sphere, and moreover, a truncated wandering null geodesic to symbolically discuss its formation. Then we examine the existence of a wandering null geodesic in general black hole spacetimes mainly in terms of Weyl focusing. We will see the essence of the black hole shadow is not the stationary cycling of the photon orbits which is the concept only available in a stationary spacetime, but their accumulation. A wandering null geodesic implies that this accumulation will be occur somewhere in an asymptotically flat spacetime.
We show that the nonlinear $sigma-$model in an asymptotically $AdS_3$ space-time admits a novel local symmetry. The field action is assumed to be quartic in the nonlinear $sigma-$model fields and minimally coupled to gravity. The local symmetry transformation simultaneously twists the nonlinear $sigma-$model fields and changes the space-time metric, and it can be used to map an extremal $BTZ$ black hole to infinitely many hairy black hole solutions.
In this paper we analyze some interesting features of the thermodynamics of the rotating BTZ black hole from the Carath{e}odory axiomatic postulate, for which, we exploit the appropriate Pfaffian form. The allowed adiabatic transformations are then obtained by solving the corresponding Cauchy problem, and are studied accordingly. Furthermore, we discuss the implications of our approach, regarding the the second and third laws of black hole thermodynamics. In particular, the merging of two extremal black holes is studied in detail.