No Arabic abstract
We report analytically known states at non-zero temperature which may serve as a powerful tool to reveal common topological and thermodynamic properties of systems ranging from the QCD phase diagram to topological phase transitions in condensed matter materials. In the holographically dual gravity theory, these are analytic solutions to a five-dimensional non-linear-sigma (Skyrme) model dynamically coupled to Einstein gravity. This theory is shown to be holographically dual to $mathcal{N}=4$ Super-Yang-Mills theory coupled to an $SU(2)$-current. All solutions are fully backreacted asymptotically Anti-de Sitter~(AdS) black branes or holes. One family of global AdS black hole solutions contains non-Abelian gauge field configurations with positive integer Chern numbers and finite energy density. Larger Chern numbers increase the Hawking-Page transition temperature. In the holographically dual field theory this indicates a significant effect on the deconfinement phase transition. Black holes with one Hawking temperature can have distinct Chern numbers, potentially enabling topological transitions. A second family of analytic solutions, rotating black branes, is also provided. These rotating solutions induce states with propagating charge density waves in the dual field theory. We compute the Hawking temperature, entropy density, angular velocity and free energy for these black holes/branes. These correspond to thermodynamic data in the dual field theory. For these states the energy-momentum tensor, (non-)conserved current, and topological charge are interpreted.
We present a new approach to describe hydrodynamics carrying non-Abelian macroscopic degrees of freedom. Based on the Kaluza-Klein compactification of a higher-dimensional neutral dissipative fluid on a group manifold, we obtain a d=4 colored dissipative fluid coupled to Yang-Mills gauge field. We calculate the transport coefficients of the new fluid, which show the non-Abelian character of the gauge group. In particular, we obtain group-valued terms in the gradient expansions and response quantities such as the conductivity matrix and the chemical potentials. While using SU(2) for simplicity, this approach is applicable to any gauge group. Resulting a robust description of non-Abelian hydrodynamics, we discuss some links between this system and quark-gluon plasma and fluid/gravity duality.
We study generic types of holographic matter residing in Lifshitz invariant defect field theory as modeled by adding probe D-branes in the bulk black hole spacetime characterized by dynamical exponent $z$ and with hyperscaling violation exponent $theta$. Our main focus will be on the collective excitations of the dense matter in the presence of an external magnetic field. Constraining the defect field theory to 2+1 dimensions, we will also allow the gauge fields become dynamical and study the properties of a strongly coupled anyonic fluid. We will deduce the universal properties of holographic matter and find that the Einstein relation always holds.
We study the chiral vortical conductivity in a holographic Weyl semimetal model, which describes a topological phase transition from the strongly coupled topologically nontrivial phase to a trivial phase. We focus on the temperature dependence of the chiral vortical conductivity where the mixed gauge-gravitational anomaly plays a crucial role. After a proper renormalization of the chiral vortical conductivity by the anomalous Hall conductivity and temperature squared, we find that at low temperature in both the Weyl semimetal phase and the quantum critical region this renormalized ratio stays as universal constants. More intriguingly, this ratio in the quantum critical region depends only on the emergent Lifshitz scaling exponent at the quantum critical point.
Two-component fermionic superfluids on a lattice with an external non-Abelian gauge field give access to a variety of topological phases in presence of a sufficiently large spin imbalance. We address here the important issue of superfluidity breakdown induced by spin imbalance by a self-consistent calculation of the pairing gap, showing which of the predicted phases will be experimentally accessible. We present the full topological phase diagram, and we analyze the connection between Chern numbers and the existence of topologically protected and non-protected edge modes. The Chern numbers are calculated via a very efficient and simple method.
We present a holographic model of a topological Weyl semimetal. A key ingredient is a time-reversal breaking parameter and a mass deformation. Upon varying the ratio of mass to time-reversal breaking parameter the model undergoes a quantum phase transition from a topologically nontrivial semimetal to a trivial one. The topological nontrivial semimetal is characterised by the presence of an anomalous Hall effect. The results can be interpreted in terms of the holographic renormalization group (RG) flow leading to restoration of time-reversal at the end point of the RG flow in the trivial phase.