No Arabic abstract
In the context of chit-chat dialogues it has been shown that endowing systems with a persona profile is important to produce more coherent and meaningful conversations. Still, the representation of such personas has thus far been limited to a fact-based representation (e.g. I have two cats.). We argue that these representations remain superficial w.r.t. the complexity of human personality. In this work, we propose to make a step forward and investigate stance-based persona, trying to grasp more profound characteristics, such as opinions, values, and beliefs to drive language generation. To this end, we introduce a novel dataset allowing to explore different stance-based persona representations and their impact on claim generation, showing that they are able to grasp abstract and profound aspects of the author persona.
We introduce end-to-end neural network based models for simulating users of task-oriented dialogue systems. User simulation in dialogue systems is crucial from two different perspectives: (i) automatic evaluation of different dialogue models, and (ii) training task-oriented dialogue systems. We design a hierarchical sequence-to-sequence model that first encodes the initial user goal and system turns into fixed length representations using Recurrent Neural Networks (RNN). It then encodes the dialogue history using another RNN layer. At each turn, user responses are decoded from the hidden representations of the dialogue level RNN. This hierarchical user simulator (HUS) approach allows the model to capture undiscovered parts of the user goal without the need of an explicit dialogue state tracking. We further develop several variants by utilizing a latent variable model to inject random variations into user responses to promote diversity in simulated user responses and a novel goal regularization mechanism to penalize divergence of user responses from the initial user goal. We evaluate the proposed models on movie ticket booking domain by systematically interacting each user simulator with various dialogue system policies trained with different objectives and users.
The rapid development of social media changes the lifestyle of people and simultaneously provides an ideal place for publishing and disseminating rumors, which severely exacerbates social panic and triggers a crisis of social trust. Early content-based methods focused on finding clues from the text and user profiles for rumor detection. Recent studies combine the stances of users comments with news content to capture the difference between true and false rumors. Although the users stance is effective for rumor detection, the manual labeling process is time-consuming and labor-intensive, which limits the application of utilizing it to facilitate rumor detection. In this paper, we first finetune a pre-trained BERT model on a small labeled dataset and leverage this model to annotate weak stance labels for users comment data to overcome the problem mentioned above. Then, we propose a novel Stance-aware Reinforcement Learning Framework (SRLF) to select high-quality labeled stance data for model training and rumor detection. Both the stance selection and rumor detection tasks are optimized simultaneously to promote both tasks mutually. We conduct experiments on two commonly used real-world datasets. The experimental results demonstrate that our framework outperforms the state-of-the-art models significantly, which confirms the effectiveness of the proposed framework.
This paper proposes a novel end-to-end architecture for task-oriented dialogue systems. It is based on a simple and practical yet very effective sequence-to-sequence approach, where language understanding and state tracking tasks are modeled jointly with a structured copy-augmented sequential decoder and a multi-label decoder for each slot. The policy engine and language generation tasks are modeled jointly following that. The copy-augmented sequential decoder deals with new or unknown values in the conversation, while the multi-label decoder combined with the sequential decoder ensures the explicit assignment of values to slots. On the generation part, slot binary classifiers are used to improve performance. This architecture is scalable to real-world scenarios and is shown through an empirical evaluation to achieve state-of-the-art performance on both the Cambridge Restaurant dataset and the Stanford in-car assistant datasetfootnote{The code is available at url{https://github.com/uber-research/FSDM}}
Systems for automatic argument generation and debate require the ability to (1) determine the stance of any claims employed in the argument and (2) assess the specificity of each claim relative to the argument context. Existing work on understanding claim specificity and stance, however, has been limited to the study of argumentative structures that are relatively shallow, most often consisting of a single claim that directly supports or opposes the argument thesis. In this paper, we tackle these tasks in the context of complex arguments on a diverse set of topics. In particular, our dataset consists of manually curated argument trees for 741 controversial topics covering 95,312 unique claims; lines of argument are generally of depth 2 to 6. We find that as the distance between a pair of claims increases along the argument path, determining the relative specificity of a pair of claims becomes easier and determining their relative stance becomes harder.
Political stance detection has become an important task due to the increasingly polarized political ideologies. Most existing works focus on identifying perspectives in news articles or social media posts, while social entities, such as individuals and organizations, produce these texts and actually take stances. In this paper, we propose the novel task of entity stance prediction, which aims to predict entities stances given their social and political context. Specifically, we retrieve facts from Wikipedia about social entities regarding contemporary U.S. politics. We then annotate social entities stances towards political ideologies with the help of domain experts. After defining the task of entity stance prediction, we propose a graph-based solution, which constructs a heterogeneous information network from collected facts and adopts gated relational graph convolutional networks for representation learning. Our model is then trained with a combination of supervised, self-supervised and unsupervised loss functions, which are motivated by multiple social and political phenomenons. We conduct extensive experiments to compare our method with existing text and graph analysis baselines. Our model achieves highest stance detection accuracy and yields inspiring insights regarding social entity stances. We further conduct ablation study and parameter analysis to study the mechanism and effectiveness of our proposed approach.