We study microwave response of a Josephson parametric oscillator consisting of a superconducting transmission-line resonator with an embedded dc-SQUID. The dc-SQUID allows to control the magnitude of a Kerr nonlinearity over the ranges where it is smaller or larger than the photon loss rate. Spectroscopy measurements reveal the change of the microwave response from a classical Duffing oscillator to a Kerr parametric oscillator in a single device. In the single-photon Kerr regime, we observe parametric oscillations with a well-defined phase of either $0$ or $pi$, whose probability can be controlled by an externally injected signal.
A Kerr-nonlinear parametric oscillator (KPO) can stabilize a quantum superposition of two coherent states with opposite phases, which can be used as a qubit. In a universal gate set for quantum computation with KPOs, an $R_x$ gate, which interchanges the two coherent states, is relatively hard to perform owing to the stability of the two states. We propose a method for a high-fidelity $R_x$ gate by exciting the KPO outside the qubit space parity-selectively, which can be implemented by only adding a driving field. In this method, utilizing higher effective excited states leads to a faster $R_x$ gate, rather than states near the qubit space. The proposed method can realize a continuous $R_x$ gate, and thus is expected to be useful for, e.g., recently proposed variational quantum algorithms.
We investigate the relaxation of a superconducting qubit for the case when its detector, the Josephson bifurcation amplifier, remains latched in one of its two (meta)stable states of forced vibrations. The qubit relaxation rates are different in different states. They can display strong dependence on the qubit frequency and resonant enhancement, which is due to quasienergy resonances. Coupling to the driven oscillator changes the effective temperature of the qubit.
The Duffing oscillator is a nonlinear extension of the ubiquitous harmonic oscillator and as such plays an outstanding role in science and technology. Experimentally, the system parameters are determined by a measurement of its response to an external excitation. When changing the amplitude or frequency of the external excitation, a sudden jump in the response function reveals the nonlinear dynamics prominently. However, this bistability leaves part of the full response function unobserved, which limits the precise measurement of the system parameters. Here, we exploit the often unknown fact that the response of a Duffing oscillator with nonlinear damping is a unique function of its phase. By actively stabilizing the oscillators phase we map out the full response function. This phase control allows us to precisely determine the system parameters. Our results are particularly important for characterizing nanoscale resonators, where nonlinear effects are observed readily and which hold great promise for next generation of ultrasensitive force and mass measurements. We demonstrate our approach experimentally with an optically levitated particle in high vacuum.
A system of harmonic oscillators coupled via nonlinear interaction is a fundamental model in many branches of physics, from biophysics to electronics and condensed matter physics. In quantum optics, weak nonlinear interaction between light modes has enabled, for example, the preparation of squeezed states of light and generation of entangled photon pairs. While strong nonlinear interaction between the modes has been realized in circuit QED systems, achieving significant interaction strength on the level of single quanta in other physical systems remains a challenge. Here we experimentally demonstrate such interaction that is equivalent to photon up- and down-conversion using normal modes of motion in a system of two Yb ions. The nonlinearity is induced by the intrinsic anharmonicity of the Coulomb interaction between the ions and can be used to simulate fully quantum operation of a degenerate optical parametric oscillator. We exploit this interaction to directly measure the parity and Wigner functions of ion motional states. The nonlinear coupling, combined with near perfect control of internal and motional states of trapped ions, can be applied to quantum computing, quantum thermodynamics, and even shed some light on the quantum information aspects of Hawking radiation.
Periodic forcing of nonlinear oscillators generates a rich and complex variety of behaviors, ranging from regular to chaotic behavior. In this work we seek to control, i.e., either suppress or generate, the chaotic behavior of a classical reference example in books or introductory articles, the Duffing oscillator. For this purpose, we propose an elegant strategy consisting of simply adjusting the shape of the time-dependent forcing. The efficiency of the proposed strategy is shown analytically, numerically and experimentally. In addition due to its simplicity and low cost such a work could easily be turned into an excellent teaching tool.