No Arabic abstract
We study the effects of an external magnetic field on thensuperconducting phase diagram of a quasi-two-dimensional system of Dirac electrons at an arbitrary temperature. At zero temperature, there is a quantum phase transition connecting a normal and a superconducting phase, occurring at a critical line that corresponds to a magnetic field dependent critical coupling parameter, which should be observed in planar materials containing Dirac electrons, such as $Cu_xTiSe_2$. Moreover, the superconducting gap is obtained as a function of temperature, magnetic field and coupling parameter ($lambda_{rm R}$). From this, we extract the critical magnetic field $ B_{ c } $ as a function of the temperature. For small values of $ B_{ c } $, we obtain a linear decay of the critical field, which is similar to the behavior observed experimentally in the copper doped dichalcogenide $Cu_xTiSe_2$ and also in intercalated graphite.
We study the effects of an external magnetic field on the superconducting properties of a quasi-two-dimensional system of Dirac electrons at an arbitrary temperature. An explicit expression for the superconducting gap is obtained as a function of temperature, magnetic field and coupling parameter ($lambda_{rm R}$). From this, we extract the $B times lambda_{rm R}$, $Ttimes lambda_{rm R}$ and $B times T$ phase diagrams. The last one shows a linear decay of the critical field for small values thereof, which is similar to the behavior observed experimentally in the copper doped dichalcogenide $Cu_xTiSe_2$ and also in intercalated graphite. The second one, presents a coupling dependent critical temperature $T_c$ that resembles the one observed in high-$T_c$ cuprates in the underdoped region and also in $Cu_xTiSe_2$. The first one, exhibits a quantum phase transition connecting a normal and a superconducting phase, occurring at a critical line that corresponds to a magnetic field dependent critical coupling parameter. This should be observed in planar materials containing Dirac electrons, such as $Cu_xTiSe_2$.
We study the influence of diagonal disorder (random site energy) of local pair (LP) site energies on the superconducting properties of a system of coexisting local pairs and itinerant electrons described by the (hard-core) boson-fermion model. Our analysis shows that the properties of such a model with s-wave pairing can be very strongly affected by the diagonal disorder in LP subsystem (the randomness of the LP site energies). This is in contrast with the conventional s-wave BCS superconductors, which according to the Andersons theorem are rather insensitive to the diagonal disorder (i.e. to nonmagnetic impurities). It has been found that the disorder effects depend in a crucial way on the total particle concentration n and the LP level position DELTA_o and depending on the parameters the system can exhibit various types of superconducting behaviour, including the LP-like, intermediate (MIXED)and the BCS-like. In the extended range of {n,DELTA_o} the superconducting ordering is suppressed by the randomness of the LP site energies and the increasing disorder induces a changeover from the MIXEDlike behaviour to the BCS-like one, connected with abrupt reduction of T_c and energy gap to zero. However, there also exist a definite range of {n,DELTA_o} in which the increasing disorder has a quite different effect: namely it can substantially enhance T_c or even lead to the phenomenon which can be called disorder induced superconductivity. Another interesting effect is a possibility of a disorder induced bound pair formation of itinerant electrons, connected with the change-over to the LP-like regime.
We present a theory describing the superconducting (SC) interaction of Dirac electrons in a quasi-two-dimensional system consisting of a stack of N planes. The occurrence of a SC phase is investigated both at T = 0 and T 5 0. At T = 0, we find a quantum phase transition connecting the normal and SC phases. Our theory qualitatively reproduces the SC phase transition occurring in the underdoped regime of the high-Tc cuprates. This fact points to the possible relevance of Dirac electrons in the mechanism of high-Tc superconductivity.
Superconductors close to quantum phase transitions often exhibit a simultaneous increase of electronic correlations and superconducting transition temperatures. Typical examples are given by the recently discovered iron-based superconductors. We investigated the band-specific quasiparticle masses of AFe2As2 single crystals with A = K, Rb, and Cs and determined their pressure dependence. The evolution of electronic correlations could be tracked as a function of volume and hole doping. The results indicate that with increasing alkali-metal ion radius a quantum critical point is approached. The critical fluctuations responsible for the enhancement of the quasiparticle masses appear to suppress the superconductivity.
We predict two topological superconducting phases in microscopic models arising from the Berry phase associated with the valley degree of freedom in gapped Dirac honeycomb systems. The first one is a topological helical spin-triplet superconductor with a nonzero center-of-mass momentum that does not break time-reversal symmetry. We also find a topological chiral-triplet superconductor with Chern number $pm 1$ with equal-spin-pairing in one valley and opposite-spin-triplet pairing in the other valley. Our results are obtained for the Kane-Mele model in which we have explored the effect of three different interactions, onsite attraction $U$, nearest-neighbor density-density attraction $V$, and nearest-neighbor antiferromagnetic exchange $J$, within self-consistent Bogoliubov--de Gennes theory. Transition metal dichalcogenides and cold atom experiments are promising platforms to explore these phases.