Concentrated Radiative Cooling


Abstract in English

A fundamental limit of current radiative cooling systems is that only the top surface facing deep-space can provide the radiative cooling effect, while the bottom surface cannot. Here, we propose and experimentally demonstrate a concept of concentrated radiative cooling by nesting a radiative cooling system in a mid-infrared reflective trough, so that the lower surface, which does not contribute to radiative cooling in previous systems, can radiate heat to deep-space via the reflective trough. Field experiments show that the temperature drop of a radiative cooling pipe with the trough is more than double that of the standalone radiative cooling pipe. Furthermore, by integrating the concentrated radiative cooling system as a preconditioner in an air conditioning system, we predict electricity savings of $>75%$ in Phoenix, AZ, and $>80%$ in Reno, NV, for a single-story commercial building.

Download