Do you want to publish a course? Click here

GW190814: On the properties of the secondary component of the binary

72   0   0.0 ( 0 )
 Added by Bhaskar Biswas
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that the odds of the mass-gap (secondary) object in GW190814 being a neutron star (NS) improve if one allows for a stiff high-density equation of state (EoS) or a large spin. Since its mass is $in (2.50,2.67) M_{odot}$, establishing its true nature will make it either the heaviest NS or the lightest black hole (BH), and can have far-reaching implications on NS EoS and compact object formation channels. When limiting oneself to the NS hypothesis, we deduce the secondarys properties by using a Bayesian framework with a hybrid EoS formulation that employs a parabolic expansion-based nuclear empirical parameterization around the nuclear saturation density augmented by a generic 3-segment piecewise polytrope (PP) model at higher densities and combining a variety of astrophysical observations. For the slow-rotation scenario, GW190814 implies a very stiff EoS and a stringent constraint on the EoS specially in the high-density region. On the other hand assuming the secondary object is a rapidly rotating NS, we constrain its rotational frequency to be $f=1170^{+389}_{-495}$ Hz, within a $90%$ confidence interval. In this scenario, the secondary object in GW190814 would qualify as the fastest rotating NS ever observed. However, for this scenario to be viable, rotational instabilities would have to be suppressed both during formation and the subsequent evolution until merger, otherwise the secondary of GW190814 is more likely to be a BH.

rate research

Read More

We put constraints on the secondary component of GW190814 by analyzing the observational data of the event. The relativistic mean-field models are used to calculate the mass-radius profile and tidal deformability of the compact object, considering it as a massive neutron star with the presence of dark matter particles inside it. With the increase of dark matter percentage, the maximum mass, radius, and tidal deformability of the neutron star decreases. We observe that the predicted properties are well consistent with GW190814 observational data, suggesting the possibility of a dark matter admixed neutron star if the underlying nuclear equation of state is sufficiently stiff.
Neutron stars (NSs) are excellent natural laboratories to constrain gravity on strong field regime and nuclear matter in extreme conditions. Motivated by the recent discovery of a compact object with $2.59^{+0.08}_{-0.09} M_odot$ in the binary merger GW190814, if this object was a NS, it serves as a strong constraint on the NS equation of state (EoS), ruling out several soft EoSs favored by GW170817 event. In this work, we revisit the question of the maximum mass of NSs considering a chameleon screening (thin-shell effect) on the NS mass-radius relation, where the microscopic physics inside the NS is given by realistic soft EoSs. We find that from appropriate and reasonable combination of modified gravity, rotation effects and realistic soft EoSs, that it is possible to achieve high masses and explain GW190814 secondary component, and in return also NSs like PSR J0740+6620 (the most NS massive confirmed to date). It is shown that gravity can play an important role in estimating maximum mass of NSs, and even with soft EoSs, it is possible to generate very high masses. Therefore, in this competition on the hydrostatic equilibrium between gravity and EoS, some soft EoSs, in principle, cannot be completely be ruled out without first taking into account gravitational effects.
X-ray pulse profile modeling of PSR J0740+6620, the most massive known pulsar, with data from the NICER and XMM-Newton observatories recently led to a measurement of its radius. We investigate this measurements implications for the neutron star equation of state (EoS), employing a nonparametric EoS model based on Gaussian processes and combining information from other x-ray, radio and gravitational-wave observations of neutron stars. Our analysis mildly disfavors EoSs that support a disconnected hybrid star branch in the mass-radius relation, a proxy for strong phase transitions, with a Bayes factor of $6.9$. For such EoSs, the transition mass from the hadronic to the hybrid branch is constrained to lie outside ($1,2$) $M_{odot}$. We also find that the conformal sound-speed bound is violated inside neutron star cores, which implies that the core matter is strongly interacting. The squared sound speed reaches a maximum of $0.75^{+0.25}_{-0.24}, c^2$ at $3.60^{+2.25}_{-1.89}$ times nuclear saturation density at 90% credibility. Since all but the gravitational-wave observations prefer a relatively stiff EoS, PSR J0740+6620s central density is only $3.57^{+1.3}_{-1.3}$ times nuclear saturation, limiting the density range probed by observations of cold, nonrotating neutron stars in $beta$-equilibrium.
121 - Xuhao Wu , Shishao Bao , Hong Shen 2021
The secondary component of GW190814 with a mass of 2.50-2.67 $M_{odot}$ may be the lightest black hole or the heaviest neutron star ever observed in a binary compact object system. To explore the possible equation of state (EOS), which can support such massive neutron star, we apply the relativistic mean-field model with a density-dependent isovector coupling constant to describe the neutron-star matter. The acceptable EOS should satisfy some constraints: the EOS model can provide a satisfactory description of the nuclei; the maximum mass $M_textrm{TOV}$ is above 2.6 $M_{odot}$; the tidal deformability of a canonical 1.4 $M_{odot}$ neutron star $Lambda_{1.4}$ should lie in the constrained range from GW170817. In this paper, we find that the nuclear symmetry energy and its density dependence play a crucial role in determining the EOS of neutron-star matter. The constraints from the mass of 2.6 $M_{odot}$ and the tidal deformability $Lambda_{1.4}=616_{-158}^{+273}$ (based on the assumption that GW190814 is a neutron star-black hole binary) can be satisfied as the slope of symmetry energy $L leq 50$ MeV. Even including the constraint of $Lambda_{1.4}=190_{-120}^{+390}$ from GW170817 which suppresses the EOS stiffness at low density, the possibility that the secondary component of GW190814 is a massive neutron star cannot be excluded in this study.
We study the impact of mass-transfer physics on the observable properties of binary black hole populations formed through isolated binary evolution. We investigate the impact of mass-accretion efficiency onto compact objects and common-envelope efficiency on the observed distributions of $chi_{eff}$, $M_{chirp}$ and $q$. We find that low common envelope efficiency translates to tighter orbits post common envelope and therefore more tidally spun up second-born black holes. However, these systems have short merger timescales and are only marginally detectable by current gravitational-waves detectors as they form and merge at high redshifts ($zsim 2$), outside current detector horizons. Assuming Eddington-limited accretion efficiency and that the first-born black hole is formed with a negligible spin, we find that all non-zero $chi_{eff}$ systems in the detectable population can come only from the common envelope channel as the stable mass-transfer channel cannot shrink the orbits enough for efficient tidal spin-up to take place. We find the local rate density ($zsimeq 0.01$) for the common envelope channel is in the range $sim 17-113~Gpc^{-3}yr^{-1}$ considering a range of $alpha_{CE} in [0.2,5.0]$ while for the stable mass transfer channel the rate density is $sim 25~Gpc^{-3}yr^{-1}$. The latter drops by two orders of magnitude if the mass accretion onto the black hole is not Eddington limited because conservative mass transfer does not shrink the orbit as efficiently as non-conservative mass transfer does. Finally, using GWTC-2 events, we constrain the lower bound of branching fraction from other formation channels in the detected population to be $sim 0.2$. Assuming all remaining events to be formed through either stable mass transfer or common envelope channels, we find moderate to strong evidence in favour of models with inefficient common envelopes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا