No Arabic abstract
We have developed an open-source pipeline for the analysis of textit{Spitzer}/IRAC channel 1 and 2 time-series photometry, incorporating some of the most popular decorrelation methods. We applied this pipeline to new phase curve observations of ultra-hot Jupiters MASCARA-1b and KELT-16b, and we performed the first comprehensive reanalysis of 15 phase curves. We find that MASCARA-1b and KELT-16b have phase offsets of $6^{+11}_{-11}~^{circ}$W and $38^{+16}_{-15}~^{circ}$W, dayside temperatures of $2952^{+100}_{-97}$ K and $3070^{+160}_{-150}$ K, and nightside temperatures of $1300^{+340}_{-340}$ K and $1900^{+430}_{-440}$ K, respectively. We confirm a strong correlation between dayside and irradiation temperatures with a shallower dependency for nightside temperature. We also find evidence that the normalized phase curve amplitude (peak-to-trough divided by eclipse depth) is correlated with stellar effective temperature. In addition, while our different models often retrieve similar parameters, significant differences occasionally arise between them, as well as between our preferred model and the literature values. Nevertheless, our preferred models are consistent with published phase offsets to within $-8pm21$ degrees ($-1.6pm3.2$ sigma), and normalized phase curve amplitudes are on average reproduced to within $-0.01pm0.24$ ($-0.1pm1.6$ sigma). Finally, we find that BLISS performs best in most cases, but not all; we therefore recommend future analyses consider numerous detector models to ensure an optimal fit and to assess model dependencies.
We observed two full orbital phase curves of the transiting brown dwarf KELT-1b, at 3.6um and 4.5um, using the Spitzer Space Telescope. Combined with previous eclipse data from Beatty et al. (2014), we strongly detect KELT-1bs phase variation as a single sinusoid in both bands, with amplitudes of $964pm36$ ppm at 3.6um and $979pm54$ ppm at 4.5um, and confirm the secondary eclipse depths measured by Beatty et al. (2014). We also measure noticeable Eastward hotspot offsets of $28.4pm3.5$ degrees at 3.6um and $18.6pm5.2$ degrees at 4.5um. Both the day-night temperature contrasts and the hotspot offsets we measure are in line with the trends seen in hot Jupiters (e.g., Crossfield 2015), though we disagree with the recent suggestion of an offset trend by Zhang et al. (2018). Using an ensemble analysis of Spitzer phase curves, we argue that nightside clouds are playing a noticeable role in modulating the thermal emission from these objects, based on: 1) the lack of a clear trend in phase offsets with equilibrium temperature, 2) the sharp day-night transitions required to have non-negative intensity maps, which also resolves the inversion issues raised by Keating & Cowan (2017), 3) the fact that all the nightsides of these objects appear to be at roughly the same temperature of 1000K, while the dayside temperatures increase linearly with equilibrium temperature, and 4) the trajectories of these objects on a Spitzer color-magnitude diagram, which suggest colors only explainable via nightside clouds.
We present full-orbit phase curve observations of the eccentric ($esim 0.08$) transiting hot Jupiter WASP-14b obtained in the 3.6 and 4.5 $mu$m bands using the textit{Spitzer Space Telescope}. We use two different methods for removing the intrapixel sensitivity effect and compare their efficacy in decoupling the instrumental noise. Our measured secondary eclipse depths of $0.1882%pm 0.0048%$ and $0.2247%pm 0.0086%$ at 3.6 and 4.5 $mu$m, respectively, are both consistent with a blackbody temperature of $2402pm 35$ K. We place a $2sigma$ upper limit on the nightside flux at 3.6 $mu$m and find it to be $9%pm 1%$ of the dayside flux, corresponding to a brightness temperature of 1079 K. At 4.5 $mu$m, the minimum planet flux is $30%pm 5%$ of the maximum flux, corresponding to a brightness temperature of $1380pm 65$ K. We compare our measured phase curves to the predictions of one-dimensional radiative transfer and three-dimensional general circulation models. We find that WASP-14bs measured dayside emission is consistent with a model atmosphere with equilibrium chemistry and a moderate temperature inversion. These same models tend to over-predict the nightside emission at 3.6 $mu$m, while under-predicting the nightside emission at 4.5 $mu$m. We propose that this discrepancy might be explained by an enhanced global C/O ratio. In addition, we find that the phase curves of WASP-14b ($7.8 M_{mathrm{Jup}}$) are consistent with a much lower albedo than those of other Jovian mass planets with thermal phase curve measurements, suggesting that it may be emitting detectable heat from the deep atmosphere or interior processes.
The hot Jupiter HD 209458b is particularly amenable to detailed study as it is among the brightest transiting exoplanet systems currently known (V-mag = 7.65; K-mag = 6.308) and has a large planet-to-star contrast ratio. HD 209458b is predicted to be in synchronous rotation about its host star with a hot spot that is shifted eastward of the substellar point by superrotating equatorial winds. Here we present the first full-orbit observations of HD 209458b, in which its 4.5 $mu$m emission was recorded with $Spitzer$/IRAC. Our study revises the previous 4.5 $mu$m measurement of HD 209458bs secondary eclipse emission downward by $sim$35% to $0.1391%^{+0.0072%}_{-0.0069%}$, changing our interpretation of the properties of its dayside atmosphere. We find that the hot spot on the planets dayside is shifted eastward of the substellar point by $40.9^{circ}pm{6.0^{circ}}$, in agreement with circulation models predicting equatorial superrotation. HD 209458bs dayside (T$_{bright}$ = 1499 $pm$ 15 K) and nightside (T$_{bright}$ = 972 $pm$ 44 K) emission indicates a day-to-night brightness temperature contrast smaller than that observed for more highly irradiated exoplanets, suggesting that the day-to-night temperature contrast may be partially a function of the incident stellar radiation. The observed phase curve shape deviates modestly from global circulation model predictions potentially due to disequilibrium chemistry or deficiencies in the current hot CH$_{4}$ line lists used in these models. Observations of the phase curve at additional wavelengths are needed in order to determine the possible presence and spatial extent of a dayside temperature inversion, as well as to improve our overall understanding of this planets atmospheric circulation.
We present textit{Spitzer} full-orbit thermal phase curves of the hot Jupiter Qatar-1b, a planet with the same equilibrium temperature---and intermediate surface gravity and orbital period---as the well-studied planets HD 209458b and WASP-43b. We measure secondary eclipse of $0.21 pm 0.02 %$ at $3.6~mu$m and $0.30 pm 0.02 %$ at $4.5~mu$m, corresponding to dayside brightness temperatures of $1542^{+32}_{-31}$~K and $1557^{+35}_{-36}$~K, respectively, consistent with a vertically isothermal dayside. The respective nightside brightness temperatures are $1117^{+76}_{-71}$~K and $1167^{+69}_{-74}$~K, in line with a trend that hot Jupiters all have similar nightside temperatures. We infer a Bond albedo of $0.12_{-0.16}^{+0.14}$ and a moderate day-night heat recirculation efficiency, similar to HD 209458b. General circulation models for HD 209458b and WASP-43b predict that their bright-spots should be shifted east of the substellar point by tens of degrees, and these predictions were previously confirmed with textit{Spitzer} full-orbit phase curve observations. The phase curves of Qatar-1b are likewise expected to exhibit eastward offsets. Instead, the observed phase curves are consistent with no offset: $11^{circ}pm 7^{circ}$ at $3.6~mu$m and $-4^{circ}pm 7^{circ}$ at $4.5~mu$m. The discrepancy in circulation patterns between these three otherwise similar planets points to the importance of secondary parameters like rotation rate and surface gravity, and the presence or absence of clouds, in determining atmospheric conditions on hot Jupiters.
We announce the discovery of KELT-16b, a highly irradiated, ultra-short period hot Jupiter transiting the relatively bright ($V = 11.7$) star TYC 2688-1839-1. A global analysis of the system shows KELT-16 to be an F7V star with $T_textrm{eff} = 6236pm54$ K, $log{g_star} = 4.253_{-0.036}^{+0.031}$, [Fe/H] = -0.002$_{-0.085}^{+0.086}$, $M_star = 1.211_{-0.046}^{+0.043} M_odot$, and $R_star = 1.360_{-0.053}^{+0.064} R_odot$. The planet is a relatively high mass inflated gas giant with $M_textrm{P} = 2.75_{-0.15}^{+0.16} M_textrm{J}$, $R_textrm{P} = 1.415_{-0.067}^{+0.084} R_textrm{J}$, density $rho_textrm{P} = 1.20pm0.18$ g cm$^{-3}$, surface gravity $log{g_textrm{P}} = 3.530_{-0.049}^{+0.042}$, and $T_textrm{eq} = 2453_{-47}^{+55}$ K. The best-fitting linear ephemeris is $T_textrm{C} = 2457247.24791pm0.00019$ BJD$_{tdb}$ and $P = 0.9689951 pm 0.0000024$ d. KELT-16b joins WASP-18b, -19b, -43b, -103b, and HATS-18b as the only giant transiting planets with $P < 1$ day. Its ultra-short period and high irradiation make it a benchmark target for atmospheric studies by HST, Spitzer, and eventually JWST. For example, as a hotter, higher mass analog of WASP-43b, KELT-16b may feature an atmospheric temperature-pressure inversion and day-to-night temperature swing extreme enough for TiO to rain out at the terminator. KELT-16b could also join WASP-43b in extending tests of the observed mass-metallicity relation of the Solar System gas giants to higher masses. KELT-16b currently orbits at a mere $sim$ 1.7 Roche radii from its host star, and could be tidally disrupted in as little as a few $times 10^{5}$ years (for a stellar tidal quality factor of $Q_* = 10^5$). Finally, the likely existence of a widely separated bound stellar companion in the KELT-16 system makes it possible that Kozai-Lidov oscillations played a role in driving KELT-16b inward to its current precarious orbit.