Sustained Coherence Characteristics of Failure Process of Shallow Buried Tunnel under Multiple Explosive Loads based on Persistent Homology


Abstract in English

The damage characteristics of a shallow buried tunnel under multiple explosive loads is an important research issue in the design and evaluation of protective engineering. It is of great significance to develop a method for early warning of the safety of the shallow buried features. The discrete element method is used to establish a mechanical model of the shallow buried tunnel. The South Load Equivalent Principle treats blast loads as a series of dynamic forces acting uniformly on the surface. Based on the discrete element method, the dynamic response after each blast load and the damage evolution process of the surrounding rock of the tunnel are obtained. The strength reduction method is used to obtain the surrounding rock of the tunnel. Introduce the theory of continuous homology, and use the mathematical method of continuous homology to quantitatively and qualitatively analyze the failure characteristics of the discrete element model under multiple explosive loads. The results show that the method of continuous homology can accurately reflect the topological characteristics of the surrounding rock of the tunnel The maximum one-dimensional bar code connection radius can effectively warn tunnel instability. This provides a new mathematical method for tunnel safety design and disaster prediction research.

Download