No Arabic abstract
Recently discovered advanced materials, such as heavy fermions, frequently exhibit a rich phase diagram suggesting the presence of different competing interactions. A unified description of the origin of these multiple interactions, albeit very important for the comprehension of such materials is, in general not available. It would be therefore very useful to have a simple model where the common source of different interactions could be possibly traced back. In this work we consider a system consisting in a set of localized spins on a square lattice with antiferromagnetic nearest neighbors interactions and itinerant electrons, which are assumed to be Dirac-like and interact with the localized spins through a Kondo magnetic interaction. This system is conveniently described by the Spin-Fermion model, which we use in order to determine the effective interactions among the itinerant electrons. By integrating out the localized degrees of freedom we obtain a set of different interactions, which includes: a BCS-like superconducting term, a Nambu-Jona-Lasinio-like, excitonic term and a spin-spin magnetic term. The resulting phase diagram is investigated by evaluation of the mean-field free-energy as a function of the relevant order parameters. This shows the competition of the above interactions, depending on the temperature, chemical potential and coupling constants.
We evaluate the effective interactions in a fluid of electrons moving in a plane, on the approach to the quantum phase transition from the paramagnetic to the fully spin-polarized phase that has been reported from Quantum Monte Carlo runs. We use the approach of Kukkonen and Overhauser to treat exchange and correlations under close constraints imposed by sum rules. We show that, as the paramagnetic fluid approaches the phase transition, the effective interactions at low momenta develop an attractive region between parallel-spin electrons and a corresponding repulsive region for antiparallel-spin electron pairs. A connection with the Hubbard model is made and used to estimate the magnetic energy gap and hence the temperature at which the phase transition may become observable with varying electron density in a semiconductor quantum well.
We study the quantum many-body ground states of electrons on the half-filled honeycomb lattice with short- and long-ranged density-density interactions as a model for graphene. To this end, we employ the recently developed truncated-unity functional renormalization group (TU-fRG) approach which allows for a high resolution of the interaction vertex wavevector dependence. We connect to previous lattice quantum Monte Carlo (QMC) results which predict a stabilization of the semimetallic phase for realistic emph{ab initio} interaction parameters and confirm that the application of a finite biaxial strain can induce a quantum phase transition towards an ordered ground state. In contrast to lattice QMC simulations, the TU-fRG is not limited in the choice of tight-binding and interaction parameters to avoid the occurrence of a sign problem. Therefore, we also investigate a range of parameters relevant to the realistic graphene material which are not accessible by numerically exact methods. Although a plethora of charge density waves arise under medium-range interactions, we find the antiferromagnetic spin-density wave to be the prevailing instability for long-range interactions. We further explore the impact of an extended tight-binding Hamiltonian with second-nearest neighbor hopping and a finite chemical potential for a more accurate description of the band structure of graphenes $p_z$ electrons.
Magnetization and heat capacity measurements of ternary rare earth intermetallic compound GdNiAl3 demonstrate para to ferromagnetic transition at Tc=165.5K. In addition multiple short range magnetic transitions observed below Tc are suggestive of competing interactions in this compound. As a result of this a weak Griffiths phase type behaviour is observed in the paramagnetic region. This complex behaviour is rather supported by the random orientation of Ni centered tricapped trigonal prisms with additional Al atoms in the structure. Heat capacity and resistivity data display an interesting peak at 72 K, which is highly unaffected by magnetic fields up to 90KOe.
CeNi9Ge4 exhibits outstanding heavy fermion features with remarkable non-Fermi- liquid behavior which is mainly driven by single-ion effects. The substitution of Ni by Cu causes a reduction of both, the RKKY coupling and Kondo interaction, coming along with a dramatic change of the crystal field (CF) splitting. Thereby a quasi-quartet ground state observed in CeNi9Ge4 reduces to a two-fold degenerate one in CeNi8CuGe4. This leads to a modiffcation of the effective spin degeneracy of the Kondo lattice ground state and to the appearance of antiferromagnetic (AFM) order. To obtain a better understanding of consequences resulting from a reduction of the effective spin degeneracy, we stepwise replaced Ni by Co. Thereby an increase of the Kondo and RKKY interactions through the reduction of the effective d-electron count is expected. Accordingly, a paramagnetic Fermi liquid ground state should arise. Our experimental studies, however, reveal AFM order already for small Co concentrations, which becomes even more pronounced with increasing Co content x. Thereby the modiffcation of the effective spin degeneracy seems to play a crucial role in this system.
We introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions at longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.