No Arabic abstract
The ${rm SU}(3)$ pure gauge theory exhibits a first-order thermal deconfinement transition due to spontaneous breaking of its global $Z_3$ center symmetry. When heavy dynamical quarks are added, this symmetry is broken explicitly and the transition weakens with decreasing quark mass until it disappears at a critical point. We compute the critical hopping parameter and the associated pion mass for lattice QCD with $N_f=2$ degenerate standard Wilson fermions on $N_tauin{6,8,10}$ lattices, corresponding to lattice spacings $a=0.12, {rm fm}$, $a=0.09, {rm fm}$, $a=0.07, {rm fm}$, respectively. Significant cut-off effects are observed, with the first-order region growing as the lattice gets finer. While current lattices are still too coarse for a continuum extrapolation, we estimate $m_pi^capprox 4 {rm GeV}$ with a remaining systematic error of $sim 20%$. Our results allow to assess the accuracy of the LO and NLO hopping expanded fermion determinant used in the literature for various purposes. We also provide a detailed investigation of the statistics required for this type of calculation, which is useful for similar investigations of the chiral transition.
We study the nature of the finite temperature phase transition for three-flavor QCD. In particular we investigate the location of the critical endpoint along the three flavor symmetric line in the light quark mass region of the Columbia plot. In the study, the Iwasaki gauge action and the nonperturvatively O($a$) improved Wilson-Clover fermion action are employed. We newly generate data at $N_{rm t}=12$ and set an upper bound of the critical pseudoscalar meson mass in the continuum limit $m_{rm PS,E}lesssim 110$MeV.
We investigate the phase structure of 3-flavor QCD in the presence of finite quark chemical potential by using Wilson-Clover fermions. To deal with the complex action with finite density, we adopt the phase reweighting method. In order to survey a wide parameter region, we employ the multi-parameter reweighting method as well as the multi-ensemble reweighting method. Especially, we focus on locating the critical end point that characterizes the phase structure. It is estimated by the kurtosis intersection method for the quark condensate. For Wilson-type fermions, the correspondence between bare parameters and physical parameters is indirect, thus we present a strategy to transfer the bare parameter phase structure to the physical one. We conclude that the curvature with respect to the chemical potential is positive. This implies that, if one starts from a quark mass in the region of crossover at zero chemical potential, one would encounter a first-order phase transition when one raises the chemical potential.
We study the finite temperature phase structure for three-flavor QCD with a focus on locating the critical point which separates crossover and first order phase transition region in the chiral regime of the Columbia plot. In this study, we employ the Iwasaki gauge action and the non-perturvatively O($a$) improved Wilson-Clover fermion action. We discuss the finite size scaling analysis including the mixing of magnetization-like and energy-like observables. We carry out the continuum extrapolation of the critical point using newly generated data at $N_{rm t}=8$, $10$ and estimate the upper bound of the critical pseudo-scalar meson mass $m_{rm PS,E} lesssim 170 {rm MeV}$ and the critical temperature $T_{rm E}=134(3){rm MeV}$. Our estimate of the upper bound is derived from the existence of the critical point as an edge of the 1st order phase transition while that of the staggered-type fermions is based on its absence.
We study the temperature dependence of bottomonium for temperatures in the range $0.4 T_c < T < 2.1 T_c$, using nonrelativistic dynamics for the bottom quark and full relativistic lattice QCD simulations for $N_f=2$ light flavors on a highly anisotropic lattice. We find that the $Upsilon$ is insensitive to the temperature in this range, while the $chi_b$ propagators show a crossover from the exponential decay characterizing the hadronic phase to a power-law behaviour consistent with nearly-free dynamics at $T simeq 2 T_c$.
We present results for the nucleon axial charge g_A at a fixed lattice spacing of 1/a=1.73(3) GeV using 2+1 flavors of domain wall fermions on size 16^3x32 and 24^3x64lattices (L=1.8 and 2.7 fm) with length 16 in the fifth dimension. The length of the Monte Carlo trajectory at the lightest m_pi is 7360 units, including 900 for thermalization. We find finite volume effects are larger than the pion mass dependence at m_pi= 330 MeV. We also find that g_A exhibits a scaling with the single variable m_pi L which can also be seen in previous two-flavor domain wall and Wilson fermion calculati ons. Using this scaling to eliminate the finite-volume effect, we obtain g_A = 1.20(6)(4) at the physical pion mass, m_pi = 135 MeV, where the first and second errors are statistical and systematic. The observed finite-volume scaling also appears in similar quenched simulations, but disappear when Vge (2.4 fm)^3. We argue this is a dynamical quark effect.