Do you want to publish a course? Click here

An Ultra-deep Multi-band VLA Survey of the Faint Radio Sky (COSMOS-XS): Source Catalog and Number Counts

74   0   0.0 ( 0 )
 Added by Hiddo Algera
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present ultra-deep, matched-resolution Karl G. Jansky Very Large Array (VLA) observations at 10 and $3$ GHz in the COSMOS field: the COSMOS-XS survey. The final 10 and $3$ GHz images cover $sim16rm{arcmin}^{2}$ and $sim180rm{arcmin}^{2}$ and reach median rms values of $0.41murm{Jy,beam}^{-1}$ and $0.53murm{Jy,beam}^{-1}$, respectively. Both images have an angular resolution of $sim 2.0$. To fully account for the spectral shape and resolution variations across the broad bands, we image all data with a multi-scale, multi-frequency synthesis algorithm. We present source catalogs for the 10 and $3$ GHz image with 91 and 1498 sources, respectively, above a peak brightness threshold of $5sigma$. We present source counts with completeness corrections included that are computed via Monte Carlo simulations. Our corrected radio counts at $3$ GHz with direct detections down to $sim2.8mu$Jy are consistent within the uncertainties with other results at 3 and 1.4 GHz, but extend to fainter flux densities than previous direct detections. The ultra-faint $3$ GHz number counts are found to exceed the counts predicted by the semi-empirical radio sky simulations developed in the framework of the SKA Simulated Skies project, consistent with previous P(D) analyses. Our measured source counts suggest a steeper luminosity function evolution for these faint star-forming sources. The semi-empirical Tiered Radio Extragalactic Continuum Simulation (T-RECS) predicts this steeper evolution and is in better agreement with our results. The $10$ GHz radio number counts also agree with the counts predicted by the T-RECS simulation within the expected variations from cosmic variance. In summary, the multi-band, matched-resolution COSMOS-XS survey in the well-studied COSMOS field provides a high-resolution view of the ultra-faint radio sky that can help guide next generation radio facilities.



rate research

Read More

Ultra-deep radio surveys are an invaluable probe of dust-obscured star formation, but require a clear understanding of the relative contribution from radio AGN to be used to their fullest potential. We study the composition of the $mu$Jy radio population detected in the Karl G. Jansky Very Large Array COSMOS-XS survey based on a sample of 1540 sources detected at 3 GHz over an area of $sim350text{arcmin}^2$. This ultra-deep survey consists of a single pointing in the well-studied COSMOS field at both 3 and 10 GHz and reaches RMS-sensitivities of $0.53$ and $0.41mu$Jy beam$^{-1}$, respectively. We find multi-wavelength counterparts for $97%$ of radio sources, based on a combination of near-UV/optical to sub-mm data, and through a stacking analysis at optical/near-infrared wavelengths we further show that the sources lacking such counterparts are likely to be high-redshift in nature (typical $zsim4-5$). Utilizing the multi-wavelength data over COSMOS, we identify AGN through a variety of diagnostics and find these to make up $23.2pm1.3%$ of our sample, with the remainder constituting uncontaminated star-forming galaxies. However, more than half of the AGN exhibit radio emission consistent with originating from star-formation, with only $8.8pm0.8%$ of radio sources showing a clear excess in radio luminosity. At flux densities of $sim30mu$Jy at 3 GHz, the fraction of star-formation powered sources reaches $sim90%$, and this fraction is consistent with unity at even lower flux densities. Overall, our findings imply that ultra-deep radio surveys such as COSMOS-XS constitute a highly effective means of obtaining clean samples of star-formation powered radio sources.
In this data paper we present and characterise the multi-component radio sources identified in the VLA-COSMOS Large Project at 3 GHz (0.75 arcsec resolution, 2.3 {mu}Jy/beam rms), i.e. the radio sources which are composed of two or more radio blobs.The classification of objects into multi-components was done by visual inspection of 351 of the brightest and most extended blobs from a sample of 10,899 blobs identified by the automatic code blobcat. For that purpose we used multi-wavelength information of the field, such as the 1.4-GHz VLA-COSMOS data and the UltraVISTA stacked mosaic available for COSMOS. We have identified 67 multi-component radio sources at 3 GHz: 58 sources with AGN powered radio emission and 9 star-forming galaxies. We report 8 new detections that were not observed by the VLA-COSMOS Large Project at 1.4 GHz, due to the slightly larger area coverage at 3 GHz. The increased spatial resolution of 0.75 arcsec has allowed us to resolve (and isolate) multiple emission peaks of 28 extended radio sources not identified in the 1.4-GHz VLA-COSMOS map. We report the multi-frequency flux densities (324 MHz, 325 MHz, 1.4 GHz & 3 GHz), star-formation-rates, and stellar masses of these objects. Multi-component objects at 3-GHz VLA-COSMOS inhabit mainly massive galaxies (>10^10.5 Msun). The majority of the multi-component AGN lie below the main-sequence of star-forming galaxies (SFGs), in the green valley and the quiescent region. We provide detailed description of the objects: amongst the AGN there are 2 head-tail, 10 core-lobe, 9 wide-angle-tail (WAT), 8 double-double or Z-/X-shaped, 3 bent-tail radio sources, and 26 symmetric sources, while amongst the SFGs we find the only star-forming ring seen in radio emission in COSMOS. We report a large number (32/58) of disturbed/bent multi-component AGN, 18 of which do not lie within X-ray groups in COSMOS (0.08 < z < 1.53). [abridged]
The VLA-COSMOS large project is described and its scientific objective is discussed. We present a catalog of ~ 3,600 radio sources found in the 2deg^2 COSMOS field at 1.4 GHz. The observations in the VLA A and C configuration resulted in a resolution of 1.5x1.4 and a mean rms noise of ~ 10.5(15) uJy/beam in the central 1(2)deg^2. 80 radio sources are clearly extended consisting of multiple components, and most of them appear to be double-lobed radio galaxies. The astrometry of the catalog has been thoroughly tested and the uncertainty in the relative and absolute astrometry are 130mas and <55mas, respectively.
We study the faint radio population using wide-field very long baseline interferometry (VLBI) observations of 2865 known radio sources in the Cosmic Evolution Survey (COSMOS) field. The main objective of the project was to determine where active galactic nuclei (AGN) are present. The combination of number of sources, sensitivity, angular resolution and area covered by this project are unprecedented. We have detected 468 radio sources, expected to be AGNs, with the Very Long Baseline Array (VLBA) at 1.4 GHz. This is, to date, the largest sample assembled of VLBI detected sources in the sub-mJy regime. The input sample was taken from previous observations with the Very Large Array (VLA). We present the catalogue with additional multiwavelength information. We find a detection fraction of 20%, considering only those sources from the input catalogue which were in principle detectable with the VLBA (2361). As a function of redshift, we see no evolution of the detection fraction over the redshift range 0.5<z<3. In addition, we find that faint radio sources typically have a greater fraction of their radio luminosity in a compact core: ~70% of the sub-mJy sources detected with the VLBA have more than half of their total radio luminosity in a VLBI-scale component, whereas this is true for only ~30% of the sources that are brighter than 10 mJy. This suggests that fainter radio sources differ intrinsically from brighter ones. Across our entire sample, we find the predominant morphological classification of the host galaxies of the VLBA detected sources to be early type (57%), although this varies with redshift and at z>1.5 we find that spiral galaxies become the most prevalent (48%). We demonstrate that wide-field VLBI observations, together with new calibration methods such as multi-source self-calibration and mosaicing, result in information which is difficult or impossible to obtain otherwise.
88 - V. Smolcic , M. Novak , M. Bondi 2017
We present the VLA-COSMOS 3 GHz Large Project based on 384 hours of observations with the Karl G. Jansky Very Large Array (VLA) at 3 GHz (10 cm) toward the two square degree Cosmic Evolution Survey (COSMOS) field. The final mosaic reaches a median rms of 2.3 uJy/beam over the two square degrees at an angular resolution of 0.75. To fully account for the spectral shape and resolution variations across the broad (2 GHz) band, we image all data with a multiscale, multifrequency synthesis algorithm. We present a catalog of 10,830 radio sources down to 5 sigma, out of which 67 are combined from multiple components. Comparing the positions of our 3 GHz sources with those from the Very Long Baseline Array (VLBA)-COSMOS survey, we estimate that the astrometry is accurate to 0.01 at the bright end (signal-to-noise ratio, S/N_3GHz > 20). Survival analysis on our data combined with the VLA-COSMOS 1.4~GHz Joint Project catalog yields an expected median radio spectral index of alpha=-0.7. We compute completeness corrections via Monte Carlo simulations to derive the corrected 3 GHz source counts. Our counts are in agreement with previously derived 3 GHz counts based on single-pointing (0.087 square degrees) VLA data. In summary, the VLA-COSMOS 3 GHz Large Project simultaneously provides the largest and deepest radio continuum survey at high (0.75) angular resolution to date, bridging the gap between last-generation and next-generation surveys.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا