Do you want to publish a course? Click here

The most ordinary formation of the most unusual double black hole merger

126   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

LIGO/Virgo Collaboration reported the detection of the most massive black hole - black hole (BH-BH) merger up to date with component masses of 85 Msun and 66 Msun (GW190521). Motivated by recent observations of massive stars in the 30 Doradus cluster in the Large Magellanic Cloud (>200 Msun; e.g. R136a) and employing newly estimated uncertainties on pulsational pair-instability mass-loss (that allow for possibility of forming BHs with mass up to 90Msun) we show that it is trivial to form such massive BH-BH mergers through the classical isolated binary evolution (with no assistance from either dynamical interactions or exotica). A binary consisting of two massive (180+150 Msun) Population II stars (Z=0.0001) evolves through a stable Roche lobe overflow and common envelope episode. Both exposed stellar cores undergo direct core-collapse and form massive BHs while avoiding pair-instability pulsation mass-loss or total disruption. LIGO/Virgo observations show that the merger rate density of light BH-BH mergers (both components: <50 Msun) is of the order of 10-100 Gpc^-3 yr^-1, while GW190521 indicates that the rate of heavier mergers is 0.02-0.43 Gpc^-3 yr^-1. Our model (with standard assumptions about input physics) but extended to include 200 Msun stars and allowing for the possibility of stellar cores collapsing to 90 Msun BHs produces the following rates: 63 Gpc^-3 yr^-1 for light BH-BH mergers and 0.04 Gpc^-3 yr^-1 for heavy BH-BH mergers. We do not claim that GW190521 was formed by an isolated binary, but it appears that such a possibility can not be excluded.



rate research

Read More

There are two outstanding issues regarding the neutron-star merger event GW170817: the nature of the compact remnant and the interstellar shock. The mass of the remnant of GW170817, $sim$2.7 $M_odot$, implies the remnant could be either a massive, rotating, neutron star, or a black hole. We report Chandra Directors Discretionary Time observations made in 2017 December and 2018 January, and we reanalyze earlier observations from 2017 August and 2017 September, in order to address these unresolved issues. We estimate the X-ray flux from a neutron star remnant and compare that to the measured X-ray flux. If we assume that the spin-down luminosity of any putative neutron star is converted to pulsar wind nebula X-ray emission in the 0.5-8 keV band with an efficiency of $10^{-3}$, for a dipole magnetic field with $3 times 10^{11}$ G < $B$ < $10^{14}$ G, a rising X-ray signal would result and would be brighter than that observed by day 107, we therefore conclude that the remnant of GW170817 is most likely a black hole. Independent of any assumptions of X-ray efficiency, however, if the remnant is a rapidly-rotating, magnetized, neutron star, the total energy in the external shock should rise by a factor $sim$$10^2$ (to $sim$$10^{52}$ erg) after a few years, therefore, Chandra observations over the next year or two that do not show substantial brightening will rule out such a remnant. The same observations can distinguish between two different models for the relativistic outflow, either an angular or radially varying structure.
124 - Chunglee Kim 2004
We summarize our results on the Galactic merger rate of double neutron stars (DNS) in view of the recent discovery of PSR J0737-3039. We also present previously unpublished results for the global probability distribution of merger rate values that incorporate the presently known systematics from the radio pulsar luminosity function. The most likely value obtained from the global distribution is only ~15 per Myr, but a re-analysis of the current pulsar sample and radio luminosities is needed for a reliable assessment of the best fitting distribution. Finally, we use our theoretical understanding of DNS formation to calculate a possible upper limit on the DNS merger rate from current Type Ib/c supernova rate estimates.
Under the assumption that jets in active galactic nuclei are powered by accretion and the spin of the central supermassive black hole, we are able to reproduce the radio luminosity functions of high- and low-excitation galaxies. High-excitation galaxies are explained as high-accretion rate but very low spin objects, while low-excitation galaxies have low accretion rates and bimodal spin distributions, with approximately half of the population having maximal spins. At higher redshifts (z~1), the prevalence of high accretion rate objects means the typical spin was lower, while in the present day Universe is dominated by low accretion rate objects, with bimodal spin distributions.
We perform a detailed study of the location of brightest cluster galaxies (BCGs) on the fundamental plane of black hole (BH) accretion, which is an empirical correlation between a BH X-ray and radio luminosity and mass supported by theoretical models of accretion. The sample comprises 72 BCGs out to $zsim0.3$ and with reliable nuclear X-ray and radio luminosities. These are found to correlate as $L_mathrm{X} propto L_mathrm{R}^{0.75 pm 0.08}$, favoring an advection-dominated accretion flow as the origin of the X-ray emission. BCGs are found to be on average offset from the fundamental plane such that their BH masses seem to be underestimated by the $M_mathrm{BH}-M_mathrm{K}$ relation a factor $sim$10. The offset is not explained by jet synchrotron cooling and is independent of emission process or amount of cluster gas cooling. Those core-dominated BCGs are found to be more significantly offset than those with weak core radio emission. For BCGs to on average follow the fundamental plane, a large fraction ($sim40%$) should have BH masses $> 10^{10}$ M$_{odot}$ and thus host ultramassive BHs. The local BH-galaxy scaling relations would not hold for these extreme objects. The possible explanations for their formation, either via a two-phase process (the BH formed first, the galaxy grows later) or as descendants of high-z seed BHs, challenge the current paradigm of a synchronized galaxy-BH growth.
Primordial black holes (PBHs) are an important tool in cosmology to probe the primordial spectrum of small-scale curvature perturbations that reenter the cosmological horizon during radiation domination epoch. We numerically solve the evolution of spherically symmetric highly perturbed configurations to clarify the criteria of PBHs formation using an extremely wide class of curvature profiles characterized by five parameters, (in contrast to only two parameters used in all previous papers) which specify the curvature profiles not only at the central region but also at the outer boundary of configurations. It is shown that formation or non-formation of PBHs is determined entirely by only two master parameters one of which can be presented as an integral of curvature over initial configurations and the other is presented in terms of the position of the boundary and the edge of the core.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا