Understanding the degree of chemical complexity that can be reached in star-forming regions, together with the identification of precursors of the building blocks of life in the interstellar medium, is one of the goals of astrochemistry. Unbiased spectral surveys with large bandwidth and high spectral resolution are thus needed, to resolve line blending in chemically rich sources and identify complex organic molecules. This kind of observations has been successfully carried out, mainly towards the Galactic Center, a region that shows peculiar environmental conditions. We present an unbiased spectral survey at 3mm of one of the most chemically rich hot molecular cores located outside the Galactic Center, in the high-mass star-forming region G31.41+0.31. In this first paper, we present the survey and discuss the detection of the 3 isomers of C$_{2}$H$_{4}$O$_{2}$: methyl formate, glycolaldehyde and acetic acid. Observations were carried out with ALMA and cover the entire Band 3 from 84 to 116 GHz with an angular resolution of $1.2^{}$x$1.2^{}$ and a spectral resolution of $sim0.488$ MHz. The transitions of the 3 molecules have been analyzed with the software XCLASS. All three isomers were detected and methyl formate and acetic acid abundances in G31 are the highest detected up to now, if compared to sources in literature. The size of the emission varies among the three isomers with acetic acid showing the most compact emission while methyl formate the most extended. The comparison with chemical models suggests the necessity of grain-surface routes for the formation of methyl formate in G31, while for glycolaldehyde both scenarios could be feasible. Proposed grain-surface reaction for acetic acid is not able to reproduce the observed abundance in this work, while gas-phase scenario should be further tested due to large uncertainties.