Do you want to publish a course? Click here

Epidemic Thresholds of Infectious Diseases on Tie-Decay Networks

95   0   0.0 ( 0 )
 Added by Mason A. Porter
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In the study of infectious diseases on networks, researchers calculate epidemic thresholds to help forecast whether a disease will eventually infect a large fraction of a population. Because network structure typically changes in time, which fundamentally influences the dynamics of spreading processes on them and in turn affects epidemic thresholds for disease propagation, it is important to examine epidemic thresholds in temporal networks. Most existing studies of epidemic thresholds in temporal networks have focused on models in discrete time, but most real-world networked systems evolve continuously in time. In our work, we encode the continuous time-dependence of networks into the evaluation of the epidemic threshold of a susceptible--infected--susceptible (SIS) process by studying an SIS model on tie-decay networks. We derive the epidemic-threshold condition of this model, and we perform numerical experiments to verify it. We also examine how different factors---the decay coefficients of the tie strengths in a network, the frequency of interactions between nodes, and the sparsity of the underlying social network in which interactions occur---lead to decreases or increases of the critical values of the threshold and hence contribute to facilitating or impeding the spread of a disease. We thereby demonstrate how the features of tie-decay networks alter the outcome of disease spread.



rate research

Read More

In social networks, interaction patterns typically change over time. We study opinion dynamics on tie-decay networks in which tie strength increases instantaneously when there is an interaction and decays exponentially between interactions. Specifically, we formulate continuous-time Laplacian dynamics and a discrete-time DeGroot model of opinion dynamics on these tie-decay networks, and we carry out numerical computations for the continuous-time Laplacian dynamics. We examine the speed of convergence by studying the spectral gaps of combinatorial Laplacian matrices of tie-decay networks. First, we compare the spectral gaps of the Laplacian matrices of tie-decay networks that we construct from empirical data with the spectral gaps for corresponding randomized and aggregate networks. We find that the spectral gaps for the empirical networks tend to be smaller than those for the randomized and aggregate networks. Second, we study the spectral gap as a function of the tie-decay rate and time. Intuitively, we expect small tie-decay rates to lead to fast convergence because the influence of each interaction between two nodes lasts longer for smaller decay rates. Moreover, as time progresses and more interactions occur, we expect eventual convergence. However, we demonstrate that the spectral gap need not decrease monotonically with respect to the decay rate or increase monotonically with respect to time. Our results highlight the importance of the interplay between the times that edges strengthen and decay in temporal networks.
The existence of a die-out threshold (different from the classic disease-invasion one) defining a region of slow extinction of an epidemic has been proved elsewhere for susceptible-aware-infectious-susceptible models without awareness decay, through bifurcation analysis. By means of an equivalent mean-field model defined on regular random networks, we interpret the dynamics of the system in this region and prove that the existence of bifurcation for this second epidemic threshold crucially depends on the absence of awareness decay. We show that the continuum of equilibria that characterizes the slow die-out dynamics collapses into a unique equilibrium when a constant rate of awareness decay is assumed, no matter how small, and that the resulting bifurcation from the disease-free equilibrium is equivalent to that of standard epidemic models. We illustrate these findings with continuous-time stochastic simulations on regular random networks with different degrees. Finally, the behaviour of solutions with and without decay in awareness is compared around the second epidemic threshold for a small rate of awareness decay.
The study of temporal networks in discrete time has yielded numerous insights into time-dependent networked systems in a wide variety of applications. For many complex systems, however, it is useful to develop continuous-time models of networks and to compare them to associated discrete models. In this paper, we study several continuous-time network models and examine discrete approximations of them both numerically and analytically. To consider continuous-time networks, we associate each edge in a graph with a time-dependent tie strength that can take continuous non-negative values and decays in time after the most recent interaction. We investigate how the mean tie strength evolves with time in several models, and we explore -- both numerically and analytically -- criteria for the emergence of a giant connected component in some of these models. We also briefly examine the effects of interaction patterns of our continuous-time networks on contagion dynamics in a susceptible-infected-recovered model of an infectious disease.
In the face of serious infectious diseases, governments endeavour to implement containment measures such as public vaccination at a macroscopic level. Meanwhile, individuals tend to protect themselves by avoiding contacts with infections at a microscopic level. However, a comprehensive understanding of how such combined strategy influences epidemic dynamics is still lacking. We study a susceptible-infected-susceptible epidemic model with imperfect vaccination on dynamic contact networks, where the macroscopic intervention is represented by random vaccination of the population and the microscopic protection is characterised by susceptible individuals rewiring contacts from infective neighbours. In particular, the model is formulated both in populations without and then with demographic effects. Using the pairwise approximation and the probability generating function approach, we investigate both dynamics of the epidemic and the underlying network. For populations without demography, the emerging degree correlations, bistable states, and oscillations demonstrate the combined effects of the public vaccination program and individual protective behavior. Compared to either strategy in isolation, the combination of public vaccination and individual protection is more effective in preventing and controlling the spread of infectious diseases by increasing both the invasion threshold and the persistence threshold. For populations with additional demographic factors, the integration between vaccination intervention and individual rewiring may promote epidemic spreading due to the birth effect. Moreover, the degree distributions of both networks in the steady state is closely related to the degree distribution of newborns, which leads to uncorrelated connectivity. All the results demonstrate the importance of both local protection and global intervention, as well as the demographic effects.
The COVID-19 pandemic has led to significant changes in how people are currently living their lives. To determine how to best reduce the effects of the pandemic and start reopening societies, governments have drawn insights from mathematical models of the spread of infectious diseases. In this article, we give an introduction to a family of mathematical models (called compartmental models) and discuss how the results of analyzing these models influence government policies and human behavior, such as encouraging mask wearing and physical distancing to help slow the spread of the disease.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا