No Arabic abstract
Cyber-physical systems combine software and physical components. Specification-driven trace-checking tools for CPS usually provide users with a specification language to express the requirements of interest, and an automatic procedure to check whether these requirements hold on the execution traces of a CPS. Although there exist several specification languages for CPS, they are often not sufficiently expressive to allow the specification of complex CPS properties related to the software and the physical components and their interactions. In this paper, we propose (i) the Hybrid Logic of Signals (HLS), a logic-based language that allows the specification of complex CPS requirements, and (ii) ThEodorE, an efficient SMT-based trace-checking procedure. This procedure reduces the problem of checking a CPS requirement over an execution trace, to checking the satisfiability of an SMT formula. We evaluated our contributions by using a representative industrial case study in the satellite domain. We assessed the expressiveness of HLS by considering 212 requirements of our case study. HLS could express all the 212 requirements. We also assessed the applicability of ThEodorE by running the trace-checking procedure for 747 trace-requirement combinations. ThEodorE was able to produce a verdict in 74.5% of the cases. Finally, we compared HLS and ThEodorE with other specification languages and trace-checking tools from the literature. Our results show that, from a practical standpoint, our approach offers a better trade-off between expressiveness and performance.
Parametric model checking (PMC) computes algebraic formulae that express key non-functional properties of a system (reliability, performance, etc.) as rational functions of the system and environment parameters. In software engineering, PMC formulae can be used during design, e.g., to analyse the sensitivity of different system architectures to parametric variability, or to find optimal system configurations. They can also be used at runtime, e.g., to check if non-functional requirements are still satisfied after environmental changes, or to select new configurations after such changes. However, current PMC techniques do not scale well to systems with complex behaviour and more than a few parameters. Our paper introduces a fast PMC (fPMC) approach that overcomes this limitation, extending the applicability of PMC to a broader class of systems than previously possible. To this end, fPMC partitions the Markov models that PMC operates with into emph{fragments} whose reachability properties are analysed independently, and obtains PMC reachability formulae by combining the results of these fragment analyses. To demonstrate the effectiveness of fPMC, we show how our fPMC tool can analyse three systems (taken from the research literature, and belonging to different application domains) with which current PMC techniques and tools struggle.
One of the advantages of adopting a Model Based Development (MBD) process is that it enables testing and verification at early stages of development. However, it is often desirable to not only verify/falsify certain formal system specifications, but also to automatically explore the properties that the system satisfies. In this work, we present a framework that enables property exploration for Cyber-Physical Systems. Namely, given a parametric specification with multiple parameters, our solution can automatically infer the ranges of parameters for which the property does not hold on the system. In this paper, we consider parametric specifications in Metric or Signal Temporal Logic (MTL or STL). Using robust semantics for MTL, the parameter mining problem can be converted into a Pareto optimization problem for which we can provide an approximate solution by utilizing stochastic optimization methods. We include algorithms for the exploration and visualization of multi-parametric specifications. The framework is demonstrated on an industrial size, high-fidelity engine model as well as examples from related literature.
Improving patient care safety is an ultimate objective for medical cyber-physical systems. A recent study shows that the patients death rate is significantly reduced by computerizing medical best practice guidelines. Recent data also show that some morbidity and mortality in emergency care are directly caused by delayed or interrupted treatment due to lack of medical resources. However, medical guidelines usually do not provide guidance on medical resource demands and how to manage potential unexpected delays in resource availability. If medical resources are temporarily unavailable, safety properties in existing executable medical guideline models may fail which may cause increased risk to patients under care. The paper presents a separately model and jointly verify (SMJV) architecture to separately model medical resource available times and relationships and jointly verify safety properties of existing medical best practice guideline models with resource models being integrated in. The SMJV architecture allows medical staff to effectively manage medical resource demands and unexpected resource availability delays during emergency care. The separated modeling approach also allows different domain professionals to make independent model modifications, facilitates the management of frequent resource availability changes, and enables resource statechart reuse in multiple medical guideline models. A simplified stroke scenario is used as a case study to investigate the effectiveness and validity of the SMJV architecture. The case study indicates that the SMJV architecture is able to identify unsafe properties caused by unexpected resource delays.
Improving effectiveness and safety of patient care is an ultimate objective for medical cyber-physical systems. A recent study shows that the patients death rate can be reduced by computerizing medical guidelines. Most existing medical guideline models are validated and/or verified based on the assumption that all necessary medical resources needed for a patient care are always available. However, the reality is that some medical resources, such as special medical equipment or medical specialists, can be temporarily unavailable for an individual patient. In such cases, safety properties validated and/or verified in existing medical guideline models without considering medical resource availability may not hold any more. The paper argues that considering medical resource availability is essential in building verifiably correct executable medical guidelines. We present an approach to explicitly and separately model medical resource availability and automatically integrate resource availability models into an existing statechart-based computerized medical guideline model. This approach requires minimal change in existing medical guideline models to take into consideration of medical resource availability in validating and verifying medical guideline models. A simplified stroke scenario is used as a case study to investigate the effectiveness and validity of our approach.
The Behavior-Interaction-Priority (BIP) framework, rooted in rigorous semantics, allows the construction of systems that are correct-by-design. BIP has been effectively used for the construction and analysis of large systems such as robot controllers and satellite on-board software. Nevertheless, the specification of BIP models is done in a purely textual manner without any code editor support. To facilitate the specification of BIP models, we present DesignBIP, a web-based, collaborative, version-controlled design studio. To promote model scaling and reusability of BIP models, we use a graphical language for modeling parameterized BIP models with rigorous semantics. We present the various services provided by the design studio, including model editors, code editors, consistency checking mechanisms, code generators, and integration with the JavaBIP tool-set.