Do you want to publish a course? Click here

Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce Discrimination

167   0   0.0 ( 0 )
 Added by Tao Zhang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

A growing specter in the rise of machine learning is whether the decisions made by machine learning models are fair. While research is already underway to formalize a machine-learning concept of fairness and to design frameworks for building fair models with sacrifice in accuracy, most are geared toward either supervised or unsupervised learning. Yet two observations inspired us to wonder whether semi-supervised learning might be useful to solve discrimination problems. First, previous study showed that increasing the size of the training set may lead to a better trade-off between fairness and accuracy. Second, the most powerful models today require an enormous of data to train which, in practical terms, is likely possible from a combination of labeled and unlabeled data. Hence, in this paper, we present a framework of fair semi-supervised learning in the pre-processing phase, including pseudo labeling to predict labels for unlabeled data, a re-sampling method to obtain multiple fair datasets and lastly, ensemble learning to improve accuracy and decrease discrimination. A theoretical decomposition analysis of bias, variance and noise highlights the different sources of discrimination and the impact they have on fairness in semi-supervised learning. A set of experiments on real-world and synthetic datasets show that our method is able to use unlabeled data to achieve a better trade-off between accuracy and discrimination.



rate research

Read More

379 - Xuanqing Liu , Si Si , Xiaojin Zhu 2019
In this paper, we proposed a general framework for data poisoning attacks to graph-based semi-supervised learning (G-SSL). In this framework, we first unify different tasks, goals, and constraints into a single formula for data poisoning attack in G-SSL, then we propose two specialized algorithms to efficiently solve two important cases --- poisoning regression tasks under $ell_2$-norm constraint and classification tasks under $ell_0$-norm constraint. In the former case, we transform it into a non-convex trust region problem and show that our gradient-based algorithm with delicate initialization and update scheme finds the (globally) optimal perturbation. For the latter case, although it is an NP-hard integer programming problem, we propose a probabilistic solver that works much better than the classical greedy method. Lastly, we test our framework on real datasets and evaluate the robustness of G-SSL algorithms. For instance, on the MNIST binary classification problem (50000 training data with 50 labeled), flipping two labeled data is enough to make the model perform like random guess (around 50% error).
We propose and analyze a method for semi-supervised learning from partially-labeled network-structured data. Our approach is based on a graph signal recovery interpretation under a clustering hypothesis that labels of data points belonging to the same well-connected subset (cluster) are similar valued. This lends naturally to learning the labels by total variation (TV) minimization, which we solve by applying a recently proposed primal-dual method for non-smooth convex optimization. The resulting algorithm allows for a highly scalable implementation using message passing over the underlying empirical graph, which renders the algorithm suitable for big data applications. By applying tools of compressed sensing, we derive a sufficient condition on the underlying network structure such that TV minimization recovers clusters in the empirical graph of the data. In particular, we show that the proposed primal-dual method amounts to maximizing network flows over the empirical graph of the dataset. Moreover, the learning accuracy of the proposed algorithm is linked to the set of network flows between data points having known labels. The effectiveness and scalability of our approach is verified by numerical experiments.
Federated Learning allows training machine learning models by using the computation and private data resources of a large number of distributed clients such as smartphones and IoT devices. Most existing works on Federated Learning (FL) assume the clients have ground-truth labels. However, in many practical scenarios, clients may be unable to label task-specific data, e.g., due to lack of expertise. In this work, we consider a server that hosts a labeled dataset, and wishes to leverage clients with unlabeled data for supervised learning. We propose a new Federated Learning framework referred to as SemiFL in order to address the problem of Semi-Supervised Federated Learning (SSFL). In SemiFL, clients have completely unlabeled data, while the server has a small amount of labeled data. SemiFL is communication efficient since it separates the training of server-side supervised data and client-side unsupervised data. We demonstrate various efficient strategies of SemiFL that enhance learning performance. Extensive empirical evaluations demonstrate that our communication efficient method can significantly improve the performance of a labeled server with unlabeled clients. Moreover, we demonstrate that SemiFL can outperform many existing FL results trained with fully supervised data, and perform competitively with the state-of-the-art centralized Semi-Supervised Learning (SSL) methods. For instance, in standard communication efficient scenarios, our method can perform 93% accuracy on the CIFAR10 dataset with only 4000 labeled samples at the server. Such accuracy is only 2% away from the result trained from 50000 fully labeled data, and it improves about 30% upon existing SSFL methods in the communication efficient setting.
There has been a growing concern about the fairness of decision-making systems based on machine learning. The shortage of labeled data has been always a challenging problem facing machine learning based systems. In such scenarios, semi-supervised learning has shown to be an effective way of exploiting unlabeled data to improve upon the performance of model. Notably, unlabeled data do not contain label information which itself can be a significant source of bias in training machine learning systems. This inspired us to tackle the challenge of fairness by formulating the problem in a semi-supervised framework. In this paper, we propose a semi-supervised algorithm using neural networks benefiting from unlabeled data to not just improve the performance but also improve the fairness of the decision-making process. The proposed model, called SSFair, exploits the information in the unlabeled data to mitigate the bias in the training data.
In this work, we propose a simple yet effective meta-learning algorithm in semi-supervised learning. We notice that most existing consistency-based approaches suffer from overfitting and limited model generalization ability, especially when training with only a small number of labeled data. To alleviate this issue, we propose a learn-to-generalize regularization term by utilizing the label information and optimize the problem in a meta-learning fashion. Specifically, we seek the pseudo labels of the unlabeled data so that the model can generalize well on the labeled data, which is formulated as a nested optimization problem. We address this problem using the meta-gradient that bridges between the pseudo label and the regularization term. In addition, we introduce a simple first-order approximation to avoid computing higher-order derivatives and provide theoretic convergence analysis. Extensive evaluations on the SVHN, CIFAR, and ImageNet datasets demonstrate that the proposed algorithm performs favorably against state-of-the-art methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا