We consider quantum phase transitions with global symmetry breakings that result in the formation of topological defects. We evaluate the number densities of kinks, vortices, and monopoles that are produced in $d=1,2,3$ spatial dimensions respectively and find that they scale as $t^{-d/2}$ and evolve towards attractor solutions that are independent of the quench timescale. For $d=1$ our results apply in the region of parameters $lambda tau/m ll 1$ where $lambda$ is the quartic self-interaction of the order parameter, $tau$ is the quench timescale, and $m$ the mass parameter.