Experimental observation of topological exciton-polaritons in transition metal dichalcogenide monolayers


Abstract in English

The rise of quantum science and technologies motivates photonics research to seek new platforms with strong light-matter interactions to facilitate quantum behaviors at moderate light intensities. One promising platform to reach such strong light-matter interacting regimes is offered by polaritonic metasurfaces, which represent ultrathin artificial media structured on nano-scale and designed to support polaritons - half-light half-matter quasiparticles. Topological polaritons, or topolaritons, offer an ideal platform in this context, with unique properties stemming from topological phases of light strongly coupled with matter. Here we explore polaritonic metasurfaces based on 2D transition metal dichalcogenides (TMDs) supporting in-plane polarized exciton resonances as a promising platform for topological polaritonics. We enable a spin-Hall topolaritonic phase by strongly coupling valley polarized in-plane excitons in a TMD monolayer with a suitably engineered all-dielectric topological photonic metasurface. We first show that the strong coupling between topological photonic bands supported by the metasurface and excitonic bands in MoSe2 yields an effective phase winding and transition to a topolaritonic spin-Hall state. We then experimentally realize this phenomenon and confirm the presence of one-way spin-polarized edge topolaritons. Combined with the valley polarization in a MoSe2 monolayer, the proposed system enables a new approach to engage the photonic angular momentum and valley degree of freedom in TMDs, offering a promising platform for photonic/solid-state interfaces for valleytronics and spintronics.

Download