Do you want to publish a course? Click here

Edge scaling limit of Dyson Brownian motion at equilibrium for general $beta geq 1$

121   0   0.0 ( 0 )
 Added by Benjamin Landon
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

For general $beta geq 1$, we consider Dyson Brownian motion at equilibrium and prove convergence of the extremal particles to an ensemble of continuous sample paths in the limit $N to infty$. For each fixed time, this ensemble is distributed as the Airy$_beta$ random point field. We prove that the increments of the limiting process are locally Brownian. When $beta >1$ we prove that after subtracting a Brownian motion, the sample paths are almost surely locally $r$-H{o}lder for any $r<1-(1+beta)^{-1}$. Furthermore for all $beta geq 1$ we show that the limiting process solves an SDE in a weak sense. When $beta=2$ this limiting process is the Airy line ensemble.



rate research

Read More

We consider the edge statistics of Dyson Brownian motion with deterministic initial data. Our main result states that if the initial data has a spectral edge with rough square root behavior down to a scale $eta_* geq N^{-2/3}$ and no outliers, then after times $t gg sqrt{ eta_*}$, the statistics at the spectral edge agree with the GOE/GUE. In particular we obtain the optimal time to equilibrium at the edge $t = N^{varepsilon} / N^{1/3}$ for sufficiently regular initial data. Our methods rely on eigenvalue rigidity results similar to those appearing in [Lee-Schnelli], the coupling idea of [Bourgade-ErdH{o}s-Yau-Yin] and the energy estimate of [Bourgade-ErdH{o}s-Yau].
We study the averaged products of characteristic polynomials for the Gaussian and Laguerre $beta$-ensembles with external source, and prove Pearcey-type phase transitions for particular full rank perturbations of source. The phases are characterised by determining the explicit functional forms of the scaled limits of the averaged products of characteristic polynomials, which are given as certain multidimensional integrals, with dimension equal to the number of products.
We access the edge of Gaussian beta ensembles with one spike by analyzing high powers of the associated tridiagonal matrix models. In the classical cases beta=1, 2, 4, this corresponds to studying the fluctuations of the largest eigenvalues of additive rank one perturbations of the GOE/GUE/GSE random matrices. In the infinite-dimensional limit, we arrive at a one-parameter family of random Feynman-Kac type semigroups, which features the stochastic Airy semigroup of Gorin and Shkolnikov [13] as an extreme case. Our analysis also provides Feynman-Kac formulas for the spiked stochastic Airy operators, introduced by Bloemendal and Virag [6]. The Feynman-Kac formulas involve functionals of a reflected Brownian motion and its local times, thus, allowing to study the limiting operators by tools of stochastic analysis. We derive a first result in this direction by obtaining a new distributional identity for a reflected Brownian bridge conditioned on its local time at zero.
We prove the edge universality of the beta ensembles for any $betage 1$, provided that the limiting spectrum is supported on a single interval, and the external potential is $mathscr{C}^4$ and regular. We also prove that the edge universality holds for generalized Wigner matrices for all symmetry classes. Moreover, our results allow us to extend bulk universality for beta ensembles from analytic potentials to potentials in class $mathscr{C}^4$.
We show that for all positive beta the semigroups of beta-Dyson Brownian motions of different dimensions are intertwined. The proof relates beta-Dyson Brownian motions directly to Jack symmetric polynomials and omits an approximation of the former by discrete space Markov chains, thereby disposing of the technical assumption beta>1 in [GS]. The corresponding results for beta-Dyson Ornstein-Uhlenbeck processes are also presented.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا