Do you want to publish a course? Click here

Pricing Cryptocurrency Options

99   0   0.0 ( 0 )
 Publication date 2020
  fields Financial
and research's language is English




Ask ChatGPT about the research

Cryptocurrencies, especially Bitcoin (BTC), which comprise a new digital asset class, have drawn extraordinary worldwide attention. The characteristics of the cryptocurrency/BTC include a high level of speculation, extreme volatility and price discontinuity. We propose a pricing mechanism based on a stochastic volatility with a correlated jump (SVCJ) model and compare it to a flexible co-jump model by Bandi and Ren`o (2016). The estimation results of both models confirm the impact of jumps and co-jumps on options obtained via simulation and an analysis of the implied volatility curve. We show that a sizeable proportion of price jumps are significantly and contemporaneously anti-correlated with jumps in volatility. Our study comprises pioneering research on pricing BTC options. We show how the proposed pricing mechanism underlines the importance of jumps in cryptocurrency markets.

rate research

Read More

In this paper, we price American-style Parisian down-and-in call options under the Black-Scholes framework. Usually, pricing an American-style option is much more difficult than pricing its European-style counterpart because of the appearance of the optimal exercise boundary in the former. Fortunately, the optimal exercise boundary associated with an American-style Parisian knock-in option only appears implicitly in its pricing partial differential equation (PDE) systems, instead of explicitly as in the case of an American-style Parisian knock-out option. We also recognize that the moving window technique developed for pricing European-style Parisian up-and-out options can be adopted to price American-style Parisian knock-in options as well. In particular, we obtain a simple analytical solution for American-style Parisian down-and-in call options and our new formula is written in terms of four double integrals, which can be easily computed numerically.
We develop a model for indifference pricing in derivatives markets where price quotes have bid-ask spreads and finite quantities. The model quantifies the dependence of the prices and hedging portfolios on an investors beliefs, risk preferences and financial position as well as on the price quotes. Computational techniques of convex optimisation allow for fast computation of the hedging portfolios and prices as well as sensitivities with respect to various model parameters. We illustrate the techniques by pricing and hedging of exotic derivatives on S&P index using call and put options, forward contracts and cash as the hedging instruments. The optimized static hedges provide good approximations of the options payouts and the spreads between indifference selling and buying prices are quite narrow as compared with the spread between super- and subhedging prices.
The main objective of this paper is to present an algorithm of pricing perpetual American put options with asset-dependent discounting. The value function of such an instrument can be described as begin{equation*} V^{omega}_{text{A}^{text{Put}}}(s) = sup_{tauinmathcal{T}} mathbb{E}_{s}[e^{-int_0^tau omega(S_w) dw} (K-S_tau)^{+}], end{equation*} where $mathcal{T}$ is a family of stopping times, $omega$ is a discount function and $mathbb{E}$ is an expectation taken with respect to a martingale measure. Moreover, we assume that the asset price process $S_t$ is a geometric Levy process with negative exponential jumps, i.e. $S_t = s e^{zeta t + sigma B_t - sum_{i=1}^{N_t} Y_i}$. The asset-dependent discounting is reflected in the $omega$ function, so this approach is a generalisation of the classic case when $omega$ is constant. It turns out that under certain conditions on the $omega$ function, the value function $V^{omega}_{text{A}^{text{Put}}}(s)$ is convex and can be represented in a closed form; see Al-Hadad and Palmowski (2021). We provide an option pricing algorithm in this scenario and we present exact calculations for the particular choices of $omega$ such that $V^{omega}_{text{A}^{text{Put}}}(s)$ takes a simplified form.
An efficient compression technique based on hierarchical tensors for popular option pricing methods is presented. It is shown that the curse of dimensionality can be alleviated for the computation of Bermudan option prices with the Monte Carlo least-squares approach as well as the dual martingale method, both using high-dimensional tensorized polynomial expansions. This discretization allows for a simple and computationally cheap evaluation of conditional expectations. Complexity estimates are provided as well as a description of the optimization procedures in the tensor train format. Numerical experiments illustrate the favourable accuracy of the proposed methods. The dynamical programming method yields results comparable to recent Neural Network based methods.
In this paper we develop an algorithm to calculate the prices and Greeks of barrier options in a hyper-exponential additive model with piecewise constant parameters. We obtain an explicit semi-analytical expression for the first-passage probability. The solution rests on a randomization and an explicit matrix Wiener-Hopf factorization. Employing this result we derive explicit expressions for the Laplace-Fourier transforms of the prices and Greeks of barrier options. As a numerical illustration, the prices and Greeks of down-and-in digital and down-and-in call options are calculated for a set of parameters obtained by a simultaneous calibration to Stoxx50E call options across strikes and four different maturities. By comparing the results with Monte-Carlo simulations, we show that the method is fast, accurate, and stable.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا