No Arabic abstract
Cities worldwide exhibit a variety of street network patterns and configurations that shape human mobility, equity, health, and livelihoods. This study models and analyzes the street networks of every urban area in the world, using boundaries derived from the Global Human Settlement Layer. Street network data are acquired and modeled from OpenStreetMap with the open-source OSMnx software. In total, this study models over 160 million OpenStreetMap street network nodes and over 320 million edges across 8,914 urban areas in 178 countries, and attaches elevation and grade data. This article presents the studys reproducible computational workflow, introduces two new open data repositories of ready-to-use global street network models and calculated indicators, and discusses summary findings on street network form worldwide. It makes four contributions. First, it reports the methodological advances of this open-source workflow. Second, it produces an open data repository containing street network models for each urban area. Third, it analyzes these models to produce an open data repository containing street network form indicators for each urban area. No such global urban street network indicator dataset has previously existed. Fourth, it presents a summary analysis of urban street network form, reporting the first such worldwide results in the literature.
Human mobility has a significant impact on several layers of society, from infrastructural planning and economics to the spread of diseases and crime. Representing the system as a complex network, in which nodes are assigned to regions (e.g., a city) and links indicate the flow of people between two of them, physics-inspired models have been proposed to quantify the number of people migrating from one city to the other. Despite the advances made by these models, our ability to predict the number of commuters and reconstruct mobility networks remains limited. Here, we propose an alternative approach using machine learning and 22 urban indicators to predict the flow of people and reconstruct the intercity commuters network. Our results reveal that predictions based on machine learning algorithms and urban indicators can reconstruct the commuters network with 90.4% of accuracy and describe 77.6% of the variance observed in the flow of people between cities. We also identify essential features to recover the network structure and the urban indicators mostly related to commuting patterns. As previously reported, distance plays a significant role in commuting, but other indicators, such as Gross Domestic Product (GDP) and unemployment rate, are also driven-forces for people to commute. We believe that our results shed new lights on the modeling of migration and reinforce the role of urban indicators on commuting patterns. Also, because link-prediction and network reconstruction are still open challenges in network science, our results have implications in other areas, like economics, social sciences, and biology, where node attributes can give us information about the existence of links connecting entities in the network.
We report on the existing connection between power-law distributions and allometries. As it was first reported in [PLoS ONE 7, e40393 (2012)] for the relationship between homicides and population, when these urban indicators present asymptotic power-law distributions, they can also display specific allometries among themselves. Here, we present an extensive characterization of this connection when considering all possible pairs of relationships from twelve urban indicators of Brazilian cities (such as child labor, illiteracy, income, sanitation and unemployment). Our analysis reveals that all our urban indicators are asymptotically distributed as power laws and that the proposed connection also holds for our data when the allometric relationship displays enough correlations. We have also found that not all allometric relationships are independent and that they can be understood as a consequence of the allometric relationship between the urban indicator and the population size. We further show that the residuals fluctuations surrounding the allometries are characterized by an almost constant variance and log-normal distributions.
The functioning of the cryptocurrency Bitcoin relies on the open availability of the entire history of its transactions. This makes it a particularly interesting socio-economic system to analyse from the point of view of network science. Here we analyse the evolution of the network of Bitcoin transactions between users. We achieve this by using the complete transaction history from December 5th 2011 to December 23rd 2013. This period includes three bubbles experienced by the Bitcoin price. In particular, we focus on the global and local structural properties of the user network and their variation in relation to the different period of price surge and decline. By analysing the temporal variation of the heterogeneity of the connectivity patterns we gain insights on the different mechanisms that take place during bubbles, and find that hubs (i.e., the most connected nodes) had a fundamental role in triggering the burst of the second bubble. Finally, we examine the local topological structures of interactions between users, we discover that the relative frequency of triadic interactions experiences a strong change before, during and after a bubble, and suggest that the importance of the hubs grows during the bubble. These results provide further evidence that the behaviour of the hubs during bubbles significantly increases the systemic risk of the Bitcoin network, and discuss the implications on public policy interventions.
In countries experiencing unprecedented waves of urbanization, there is a need for rapid and high quality urban street design. Our study presents a novel deep learning powered approach, DeepStreet (DS), for automatic street network generation that can be applied to the urban street design with local characteristics. DS is driven by a Convolutional Neural Network (CNN) that enables the interpolation of streets based on the areas of immediate vicinity. Specifically, the CNN is firstly trained to detect, recognize and capture the local features as well as the patterns of the existing street network sourced from the OpenStreetMap. With the trained CNN, DS is able to predict street networks future expansion patterns within the predefined region conditioned on its surrounding street networks. To test the performance of DS, we apply it to an area in and around the Eixample area in the City of Barcelona, a well known example in the fields of urban and transport planning with iconic grid like street networks in the centre and irregular road alignments farther afield. The results show that DS can (1) detect and self cluster different types of complex street patterns in Barcelona; (2) predict both gridiron and irregular street and road networks. DS proves to have a great potential as a novel tool for designers to efficiently design the urban street network that well maintains the consistency across the existing and newly generated urban street network. Furthermore, the generated networks can serve as a benchmark to guide the local plan-making especially in rapidly developing cities.
We examine a key component of human settlements mediating pollution and congestion, as well as economic development: roads and their expansion in cities, towns and villages. Our analysis of road networks in more than 850 US cities and rural counties since 1900 reveals significant variations in the structure of roads both within cities and across the conterminous US. Despite differences in the evolution of these networks, there are commonalities: newer roads tend to become less grid-like. These results persist across the rural-urban continuum and are therefore not just a product of urban growth. These findings illuminate the need for policies for urban and rural planning including the critical assessment of new development trends.