Do you want to publish a course? Click here

Closed-loop spiking control on a neuromorphic processor implemented on the iCub

198   0   0.0 ( 0 )
 Added by Jingyue Zhao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Despite neuromorphic engineering promises the deployment of low latency, adaptive and low power systems that can lead to the design of truly autonomous artificial agents, the development of a fully neuromorphic artificial agent is still missing. While neuromorphic sensing and perception, as well as decision-making systems, are now mature, the control and actuation part is lagging behind. In this paper, we present a closed-loop motor controller implemented on mixed-signal analog-digital neuromorphic hardware using a spiking neural network. The network performs a proportional control action by encoding target, feedback, and error signals using a spiking relational network. It continuously calculates the error through a connectivity pattern, which relates the three variables by means of feed-forward connections. Recurrent connections within each population are used to speed up the convergence, decrease the effect of mismatch and improve selectivity. The neuromorphic motor controller is interfaced with the iCub robot simulator. We tested our spiking P controller in a single joint control task, specifically for the robot head yaw. The spiking controller sends the target positions, reads the motor state from its encoder, and sends back the motor commands to the joint. The performance of the spiking controller is tested in a step response experiment and in a target pursuit task. In this work, we optimize the network structure to make it more robust to noisy inputs and device mismatch, which leads to better control performances.



rate research

Read More

Neuromorphic hardware platforms implement biological neurons and synapses to execute spiking neural networks (SNNs) in an energy-efficient manner. We present SpiNeMap, a design methodology to map SNNs to crossbar-based neuromorphic hardware, minimizing spike latency and energy consumption. SpiNeMap operates in two steps: SpiNeCluster and SpiNePlacer. SpiNeCluster is a heuristic-based clustering technique to partition SNNs into clusters of synapses, where intracluster local synapses are mapped within crossbars of the hardware and inter-cluster global synapses are mapped to the shared interconnect. SpiNeCluster minimizes the number of spikes on global synapses, which reduces spike congestion on the shared interconnect, improving application performance. SpiNePlacer then finds the best placement of local and global synapses on the hardware using a meta-heuristic-based approach to minimize energy consumption and spike latency. We evaluate SpiNeMap using synthetic and realistic SNNs on the DynapSE neuromorphic hardware. We show that SpiNeMap reduces average energy consumption by 45% and average spike latency by 21%, compared to state-of-the-art techniques.
Neuromorphic computing describes the use of VLSI systems to mimic neuro-biological architectures and is also looked at as a promising alternative to the traditional von Neumann architecture. Any new computing architecture would need a system that can perform floating-point arithmetic. In this paper, we describe a neuromorphic system that performs IEEE 754-compliant floating-point multiplication. The complex process of multiplication is divided into smaller sub-tasks performed by components Exponent Adder, Bias Subtractor, Mantissa Multiplier and Sign OF/UF. We study the effect of the number of neurons per bit on accuracy and bit error rate, and estimate the optimal number of neurons needed for each component.
Studying and understanding the computational primitives of our neural system requires for a diverse and complementary set of techniques. In this work, we use the Neuro-robotic Platform (NRP)to evaluate the vestibulo ocular cerebellar adaptatIon (Vestibulo-ocular reflex, VOR)mediated by two STDP mechanisms located at the cerebellar molecular layer and the vestibular nuclei respectively. This simulation study adopts an experimental setup (rotatory VOR)widely used by neuroscientists to better understand the contribution of certain specific cerebellar properties (i.e. distributed STDP, neural properties, coding cerebellar topology, etc.)to r-VOR adaptation. The work proposes and describes an embodiment solution for which we endow a simulated humanoid robot (iCub)with a spiking cerebellar model by means of the NRP, and we face the humanoid to an r-VOR task. The results validate the adaptive capabilities of the spiking cerebellar model (with STDP)in a perception-action closed-loop (r- VOR)causing the simulated iCub robot to mimic a human behavior.
Neuromorphic chip refers to an unconventional computing architecture that is modelled on biological brains. It is ideally suited for processing sensory data for intelligence computing, decision-making or context cognition. Despite rapid development, conventional artificial synapses exhibit poor connection flexibility and require separate data acquisition circuitry, resulting in limited functionalities and significant hardware redundancy. Here we report a novel light-stimulated artificial synapse based on a graphene-nanotube hybrid phototransistor that can directly convert optical stimuli into a neural image for further neuronal analysis. Our optically-driven synapses involve multiple steps of plasticity mechanisms and importantly exhibit flexible tuning of both short- and long-term plasticity. Furthermore, our neuromorphic phototransistor can take multiple pre-synaptic light stimuli via wavelength-division multiplexing and allows advanced optical processing through charge-trap-mediated optical coupling. The capability of complex neuromorphic functionalities in a simple silicon-compatible device paves the way for novel neuromorphic computing architectures involving photonics.
Modern computation based on the von Neumann architecture is today a mature cutting-edge science. In this architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex and unstructured data as our brain does. Neuromorphic computing systems are aimed at addressing these needs. The human brain performs about 10^15 calculations per second using 20W and a 1.2L volume. By taking inspiration from biology, new generation computers could have much lower power consumption than conventional processors, could exploit integrated non-volatile memory and logic, and could be explicitly designed to support dynamic learning in the context of complex and unstructured data. Among their potential future applications, business, health care, social security, disease and viruses spreading control might be the most impactful at societal level. This roadmap envisages the potential applications of neuromorphic materials in cutting edge technologies and focuses on the design and fabrication of artificial neural systems. The contents of this roadmap will highlight the interdisciplinary nature of this activity which takes inspiration from biology, physics, mathematics, computer science and engineering. This will provide a roadmap to explore and consolidate new technology behind both present and future applications in many technologically relevant areas.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا