Do you want to publish a course? Click here

The spatially resolved broad line region of IRAS 09149-6206

99   0   0.0 ( 0 )
 Added by Jinyi Shangguan
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present new near-infrared VLTI/GRAVITY interferometric spectra that spatially resolve the broad Br$gamma$ emission line in the nucleus of the active galaxy IRAS 09149-6206. We use these data to measure the size of the broad line region (BLR) and estimate the mass of the central black hole. Using an improved phase calibration method that reduces the differential phase uncertainty to 0.05 degree per baseline across the spectrum, we detect a differential phase signal that reaches a maximum of ~0.5 degree between the line and continuum. This represents an offset of ~120 $mu$as (0.14 pc) between the BLR and the centroid of the hot dust distribution traced by the 2.3 $mu$m continuum. The offset is well within the dust sublimation region, which matches the measured ~0.6 mas (0.7 pc) diameter of the continuum. A clear velocity gradient, almost perpendicular to the offset, is traced by the reconstructed photocentres of the spectral channels of the Br$gamma$ line. We infer the radius of the BLR to be ~65 $mu$as (0.075 pc), which is consistent with the radius-luminosity relation of nearby active galactic nuclei derived based on the time lag of the H$beta$ line from reverberation mapping campaigns. Our dynamical modelling indicates the black hole mass is $sim 1times10^8,M_odot$, which is a little below, but consistent with, the standard $M_{rm BH}$-$sigma_*$ relation.



rate research

Read More

We present new broadband X-ray observations of the type-I Seyfert galaxy IRAS 09149-6206, taken in 2018 with $XMM$-$Newton$, $NuSTAR$ and $Swift$. The source is highly complex, showing a classic warm X-ray absorber, additional absorption from highly ionised iron, strong relativistic reflection from the innermost accretion disc and further reprocessing by more distant material. By combining X-ray timing and spectroscopy, we have been able to fully characterise the supermassive black hole in this system, constraining both its mass and - for the first time - its spin. The mass is primarily determined by X-ray timing constraints on the break frequency seen in the power spectrum, and is found to be $log[M_{rm{BH}}/M_{odot}] = 8.0 pm 0.6$ (1$sigma$ uncertainties). This is in good agreement with previous estimates based on the H$alpha$ and H$beta$ line widths, and implies that IRAS 09149-6206 is radiating at close to (but still below) its Eddington luminosity. The spin is constrained via detailed modelling of the relativistic reflection, and is found to be $a^* = 0.94^{+0.02}_{-0.07}$ (90% confidence), adding IRAS 09149-6206 to the growing list of radio-quiet AGN that host rapidly rotating black holes. The outflow velocities of the various absorption components are all relatively modest ($v_{rm{out}} lesssim 0.03c$), implying these are unlikely to drive significant galaxy-scale AGN feedback.
The broadening of atomic emission lines by high-velocity motion of gas near accreting supermassive black holes is an observational hallmark of quasars. Observations of broad emission lines could potentially constrain the mechanism for transporting gas inwards through accretion disks or outwards through winds. The size of this broad-line region has been estimated by measuring the light travel time delay between the variable nuclear continuum and the emission lines - a method known as reverberation mapping. In some models the emission lines arise from a continuous outflow, whereas in others they are produced by orbiting gas clouds. Directly imaging such regions has not hitherto been possible because of their small angular sizes (< 0.1 milli-arcseconds). Here we report a spatial offset (with a spatial resolution of ten micro-arcseconds or about 0.03 parsecs for a distance of 550 million parsecs) between the red and blue photo-centres of the broad Paschen-{alpha} line of the quasar 3C 273 perpendicular to the direction of its radio jet. This spatial offset corresponds to a gradient in the velocity of the gas and thus implies that the gas is orbiting the central supermassive black hole. The data are well fitted by a broad-line-region model of a thick disk of gravitationally bound material orbiting a black hole of 300 million solar masses. We infer a disk radius of 150 light days; a radius of 100-400 light days was found previously using reverberation mapping. The rotation axis of the disk aligns in inclination and position angle with the radio jet. Our results support the methods that are often used to estimate the masses of accreting supermassive black holes and to study their evolution over cosmic time.
We present the results of integral field spectroscopy of the gravitational wave (GW) recoiling black hole candidate 3C 186. The goal of the observations is to study the kinematics of the [OIII]5007 narrow emission line region (NLR) of the quasar, and investigate the origin of the velocity offsets originally measured for different UV lines. The results show that i) the spatial structure of the NLR is complex. The [OIII]5007 line shows significant velocity offsets with respect to the systemic redshift of the source. Different components at different velocities (-670, -100, + 75 km s^-1) are produced in different regions of the source. ii) we detect both the narrow and the broad components of the Hbeta line. The narrow component generally follows the kinematics of the [OIII] line, while the broad component is significantly blue-shifted. The peak of the broad line is near the blue end, or possibly outside of the sensitivity band of the instrument, implying a velocity offset of >~1800 km s^-1. This result is in agreement with the interpretation of the QSO as a GW recoiling black hole. The properties of the NLR show that the observed outflows are most likely the effect of radiation pressure on the (photoionized) gas in the interstellar medium of the host galaxy.
173 - Ximena Mazzalay 2010
We present an analysis of STIS/HST optical spectra of a sample of ten Seyfert galaxies aimed at studying the structure and physical properties of the coronal-line region (CLR). The high-spatial resolution provided by STIS allowed us to resolve the CLR and obtain key information about the kinematics of the coronal-line gas, measure directly its spatial scale, and study the mechanisms that drive the high-ionisation lines. We find CLRs extending from just a few parsecs (~10 pc) up to 230 pc in radius, consistent with the bulk of the coronal lines (CLs) originating between the BLR and NLR, and extending into the NLR in the case of [FeVII] and [NeV] lines. The CL profiles strongly vary with the distance to the nucleus. We observed line splitting in the core of some of the galaxies. Line peak shifts, both red- and blue-shifts, typically reached 500 km/s, and even higher velocities (1000 km/s) in some of the galaxies. In general, CLs follow the same pattern of rotation curves as low-ionisation lines like [OIII]. From a direct comparison between the radio and the CL emission we find that neither the strength nor the kinematics of the CLs scale in any obvious and strong way with the radio jets. Moreover, the similarity of the flux distributions and kinematics of the CLs and low-ionisation lines, the low temperatures derived for the gas, and the success of photoionisation models to reproduce, within a factor of few, the observed line ratios, point towards photoionisation as the main driving mechanism of CLs.
Most results of the reverberation monitoring of active galaxies showed a universal scaling of the time delay of the Hbeta emission region with the monochromatic flux at 5100 A, with very small dipersion. Such a scaling favored the dust-based formation mechanism of the Broad Line Region (BLR). Recent reverberation measurements showed that actually a significant fraction of objects exhibits horter lags than the previously found scaling. Here we demonstrate that these shorter lags can be explained by the old concept of scaling of the BLR size with the ionization parameter. Assuming a universal value of this parameter and universal value of the cloud density reproduces the distribution of observational points in the time delay vs. monochromatic flux plane, provided that a range of black hole spins is allowed. However, a confirmation of the new measurements for low/moderate Eddington ratio sources is strongly needed before the dust-based origin of the BLR can be excluded.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا