No Arabic abstract
Anomalous finite-temperature transport has recently been observed in numerical studies of various integrable models in one dimension; these models share the feature of being invariant under a continuous non-abelian global symmetry. This work offers a comprehensive group-theoretic account of this elusive phenomenon. For an integrable quantum model invariant under a global non-abelian simple Lie group $G$, we find that finite-temperature transport of Noether charges associated with symmetry $G$ in thermal states that are invariant under $G$ is universally superdiffusive and characterized by dynamical exponent $z = 3/2$. This conclusion holds regardless of the Lie algebra symmetry, local degrees of freedom (on-site representations), Lorentz invariance, or particular realization of microscopic interactions: we accordingly dub it as superuniversal. The anomalous transport behavior is attributed to long-lived giant quasiparticles dressed by thermal fluctuations. We provide an algebraic viewpoint on the corresponding dressing transformation and elucidate formal connections to fusion identities amongst the quantum-group characters. We identify giant quasiparticles with nonlinear soliton modes of classical field theories that describe low-energy excitations above ferromagnetic vacua. Our analysis of these field theories also provides a complete classification of the low-energy (i.e., Goldstone-mode) spectra of quantum isotropic ferromagnetic chains.
Finite-temperature spin transport in the quantum Heisenberg spin chain is known to be superdiffusive, and has been conjectured to lie in the Kardar-Parisi-Zhang (KPZ) universality class. Using a kinetic theory of transport, we compute the KPZ coupling strength for the Heisenberg chain as a function of temperature, directly from microscopics; the results agree well with density-matrix renormalization group simulations. We establish a rigorous quantum-classical correspondence between the giant quasiparticles that govern superdiffusion and solitons in the classical continuous Landau-Lifshitz ferromagnet. We conclude that KPZ universality has the same origin in classical and quantum integrable isotropic magnets: a finite-temperature gas of low-energy classical solitons.
Superdiffusive finite-temperature transport has been recently observed in a variety of integrable systems with nonabelian global symmetries. Superdiffusion is caused by giant Goldstone-like quasiparticles stabilized by integrability. Here, we argue that these giant quasiparticles remain long-lived, and give divergent contributions to the low-frequency conductivity $sigma(omega)$, even in systems that are not perfectly integrable. We find, perturbatively, that $ sigma(omega) sim omega^{-1/3}$ for translation-invariant static perturbations that conserve energy, and $sigma(omega) sim | log omega |$ for noisy perturbations. The (presumable) crossover to regular diffusion appears to lie beyond low-order perturbation theory. By contrast, integrability-breaking perturbations that break the nonabelian symmetry yield conventional diffusion. Numerical evidence supports the distinction between these two classes of perturbations.
This review summarizes recent advances in our understanding of anomalous transport in spin chains, viewed through the lens of integrability. Numerical advances, based on tensor-network methods, have shown that transport in many canonical integrable spin chains -- most famously the Heisenberg model -- is anomalous. Concurrently, the framework of generalized hydrodynamics has been extended to explain some of the mechanisms underlying anomalous transport. We present what is currently understood about these mechanisms, and discuss how they resemble (and differ from) the mechanisms for anomalous transport in other contexts. We also briefly review potential transport anomalies in systems where integrability is an emergent or approximate property. We survey instances of anomalous transport and dynamics that remain to be understood.
After a short excursion from discovery of Brownian motion to the Richardson law of four thirds in turbulent diffusion, the article introduces the L{e}vy flight superdiffusion as a self-similar L{e}vy process. The condition of self-similarity converts the infinitely divisible characteristic function of the L{e}vy process into a stable characteristic function of the L{e}vy motion. The L{e}vy motion generalizes the Brownian motion on the base of the $alpha$-stable distributions theory and fractional order derivatives. The further development of the idea lies on the generalization of the Langevin equation with a non-Gaussian white noise source and the use of functional approach. This leads to the Kolmogorovs equation for arbitrary Markovian processes. As particular case we obtain the fractional Fokker-Planck equation for L{e}vy flights. Some results concerning stationary probability distributions of L{e}vy motion in symmetric smooth monostable potentials, and a general expression to calculate the nonlinear relaxation time in barrier crossing problems are derived. Finally we discuss results on the same characteristics and barrier crossing problems with L{e}vy flights, recently obtained with different approaches.
The impact of bound states in Landauer-Buttiker scattering approach to non-equilibrium quantum transport is investigated. We show that the noise power at frequency $ u$ is sensitive to all bound states with energies $omega_b$ satisfying $|omega_b| < u$. We derive the exact expression of the bound state contribution and compare it to the one produced by the scattering states alone. It turns out that the bound states lead to specific modifications of both space and frequency dependence of the total noise power. The theoretical and experimental consequences of this result are discussed.