In Ref. [1], a method was proposed to calculate QED corrections to hadronic self energies from lattice QCD without power-law finite-volume errors. In this paper, we extend the method to processes which occur at second-order in the weak interaction and in which there is a massless (or almost massless) leptonic propagator. We demonstrate that, in spite of the presence of the propagator of an almost massless electron, such an infinite-volume reconstruction procedure can be used to obtain the amplitude for the rare kaon decay $K^+topi^+ ubar u$ from a lattice quantum chromodynamics computation with only exponentially small finite-volume corrections.