Do you want to publish a course? Click here

On attainability of Kendalls tau matrices and concordance signatures

73   0   0.0 ( 0 )
 Added by Alexander McNeil
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The concordance signature of a multivariate continuous distribution is the vector of concordance probabilities for margins of all orders; it underlies the bivariate and multivariate Kendalls tau measure of concordance. It is shown that every attainable concordance signature is equal to the concordance signature of a unique mixture of the extremal copulas, that is the copulas with extremal correlation matrices consisting exclusively of 1s and -1s. This result establishes that the set of attainable Kendall rank correlation matrices of multivariate continuous distributions in arbitrary dimension is the set of convex combinations of extremal correlation matrices, a set known as the cut polytope. A methodology for testing the attainability of concordance signatures using linear optimization and convex analysis is provided. The elliptical copulas are shown to yield a strict subset of the attainable concordance signatures as well as a strict subset of the attainable Kendall rank correlation matrices; the Student t copula is seen to converge to a mixture of extremal copulas sharing its concordance signature with all elliptical distributions that have the same correlation matrix. A method of estimating an attainable concordance signature from data is derived and shown to correspond to using standard estimates of Kendalls tau in the absence of ties. The methodology has application to Monte Carlo simulations of dependent random variables as well as expert elicitation of consistent systems of Kendalls tau dependence measures.



rate research

Read More

83 - Zhigang Bao 2017
In this paper, we study a high-dimensional random matrix model from nonparametric statistics called the Kendall rank correlation matrix, which is a natural multivariate extension of the Kendall rank correlation coefficient. We establish the Tracy-Widom law for its largest eigenvalue. It is the first Tracy-Widom law for a nonparametric random matrix model, and also the first Tracy-Widom law for a high-dimensional U-statistic.
512 - Pranab K. Sen 2008
High-dimensional data models, often with low sample size, abound in many interdisciplinary studies, genomics and large biological systems being most noteworthy. The conventional assumption of multinormality or linearity of regression may not be plausible for such models which are likely to be statistically complex due to a large number of parameters as well as various underlying restraints. As such, parametric approaches may not be very effective. Anything beyond parametrics, albeit, having increased scope and robustness perspectives, may generally be baffled by the low sample size and hence unable to give reasonable margins of errors. Kendalls tau statistic is exploited in this context with emphasis on dimensional rather than sample size asymptotics. The Chen--Stein theorem has been thoroughly appraised in this study. Applications of these findings in some microarray data models are illustrated.
In this paper, we analyse singular values of a large $ptimes n$ data matrix $mathbf{X}_n= (mathbf{x}_{n1},ldots,mathbf{x}_{nn})$ where the column $mathbf{x}_{nj}$s are independent $p$-dimensional vectors, possibly with different distributions. Such data matrices are common in high-dimensional statistics. Under a key assumption that the covariance matrices $mathbf{Sigma}_{nj}=text{Cov}(mathbf{x}_{nj})$ can be asymptotically simultaneously diagonalizable, and appropriate convergence of their spectra, we establish a limiting distribution for the singular values of $mathbf{X}_n$ when both dimension $p$ and $n$ grow to infinity in a comparable magnitude. The matrix model goes beyond and includes many existing works on different types of sample covariance matrices, including the weighted sample covariance matrix, the Gram matrix model and the sample covariance matrix of linear times series models. Furthermore, we develop two applications of our general approach. First, we obtain the existence and uniqueness of a new limiting spectral distribution of realized covariance matrices for a multi-dimensional diffusion process with anisotropic time-varying co-volatility processes. Secondly, we derive the limiting spectral distribution for singular values of the data matrix for a recent matrix-valued auto-regressive model. Finally, for a generalized finite mixture model, the limiting spectral distribution for singular values of the data matrix is obtained.
119 - R.Sharma , R.Kumar , R.Saini 2019
We derive some inequalities involving first four central moments of discrete and continuous distributions. Bounds for the eigenvalues and spread of a matrix are obtained when all its eigenvalues are real. Likewise, we discuss bounds for the roots and span of a polynomial equation.
122 - O Roustant , Y Deville 2017
We consider the set Bp of parametric block correlation matrices with p blocks of various (and possibly different) sizes, whose diagonal blocks are compound symmetry (CS) correlation matrices and off-diagonal blocks are constant matrices. Such matrices appear in probabilistic models on categorical data, when the levels are partitioned in p groups, assuming a constant correlation within a group and a constant correlation for each pair of groups. We obtain two necessary and sufficient conditions for positive definiteness of elements of Bp. Firstly we consider the block average map $phi$, consisting in replacing a block by its mean value. We prove that for any A $in$ Bp , A is positive definite if and only if $phi$(A) is positive definite. Hence it is equivalent to check the validity of the covariance matrix of group means, which only depends on the number of groups and not on their sizes. This theorem can be extended to a wider set of block matrices. Secondly, we consider the subset of Bp for which the between group correlation is the same for all pairs of groups. Positive definiteness then comes down to find the positive definite interval of a matrix pencil on Sp. We obtain a simple characterization by localizing the roots of the determinant with within group correlation values.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا