Do you want to publish a course? Click here

Time-varying auto-regressive models for count time-series

85   0   0.0 ( 0 )
 Added by Arkaprava Roy
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Count-valued time series data are routinely collected in many application areas. We are particularly motivated to study the count time series of daily new cases, arising from COVID-19 spread. We propose two Bayesian models, a time-varying semiparametric AR(p) model for count and then a time-varying INGARCH model considering the rapid changes in the spread. We calculate posterior contraction rates of the proposed Bayesian methods with respect to average Hellinger metric. Our proposed structures of the models are amenable to Hamiltonian Monte Carlo (HMC) sampling for efficient computation. We substantiate our methods by simulations that show superiority compared to some of the close existing methods. Finally we analyze the daily time series data of newly confirmed cases to study its spread through different government interventions.



rate research

Read More

A general class of time-varying regression models is considered in this paper. We estimate the regression coefficients by using local linear M-estimation. For these estimators, weak Bahadur representations are obtained and are used to construct simultaneous confidence bands. For practical implementation, we propose a bootstrap based method to circumvent the slow logarithmic convergence of the theoretical simultaneous bands. Our results substantially generalize and unify the treatments for several time-varying regression and auto-regression models. The performance for ARCH and GARCH models is studied in simulations and a few real-life applications of our study are presented through analysis of some popular financial datasets.
The meningitis belt is a region in sub-Saharan Africa where annual outbreaks of meningitis occur, with large epidemics observed cyclically. While we know that meningitis is heavily dependent on seasonal trends (in particular, weather), the exact pathways for contracting the disease are not fully understood and warrant further investigation. This manuscript examines meningitis trends in the context of survival analysis, quantifying underlying seasonal patterns in meningitis rates through the hazard rate for the population of Navrongo, Ghana. We compare three candidate models: the commonly used Poisson generalized linear model, the Bayesian multi-resolution hazard model, and the Poisson generalized additive model. We compare the accuracy and robustness of the models through the bias, RMSE, and the standard deviation. We provide a detailed case study of meningitis patterns for data collected in Navrongo, Ghana.
Cluster indices describe extremal behaviour of stationary time series. We consider runs estimators of cluster indices. Using a modern theory of multivariate, regularly varying time series, we obtain central limit theorems under conditions that can be easily verified for a large class of models. In particular, we show that blocks and runs estimators have the same limiting variance.
Many existing mortality models follow the framework of classical factor models, such as the Lee-Carter model and its variants. Latent common factors in factor models are defined as time-related mortality indices (such as $kappa_t$ in the Lee-Carter model). Factor loadings, which capture the linear relationship between age variables and latent common factors (such as $beta_x$ in the Lee-Carter model), are assumed to be time-invariant in the classical framework. This assumption is usually too restrictive in reality as mortality datasets typically span a long period of time. Driving forces such as medical improvement of certain diseases, environmental changes and technological progress may significantly influence the relationship of different variables. In this paper, we first develop a factor model with time-varying factor loadings (time-varying factor model) as an extension of the classical factor model for mortality modelling. Two forecasting methods to extrapolate the factor loadings, the local regression method and the naive method, are proposed for the time-varying factor model. From the empirical data analysis, we find that the new model can capture the empirical feature of time-varying factor loadings and improve mortality forecasting over different horizons and countries. Further, we propose a novel approach based on change point analysis to estimate the optimal `boundary between short-term and long-term forecasting, which is favoured by the local linear regression and naive method, respectively. Additionally, simulation studies are provided to show the performance of the time-varying factor model under various scenarios.
We propose a nonparametric method to explicitly model and represent the derivatives of smooth underlying trajectories for longitudinal data. This representation is based on a direct Karhunen--Lo`eve expansion of the unobserved derivatives and leads to the notion of derivative principal component analysis, which complements functional principal component analysis, one of the most popular tools of functional data analysis. The proposed derivative principal component scores can be obtained for irregularly spaced and sparsely observed longitudinal data, as typically encountered in biomedical studies, as well as for functional data which are densely measured. Novel consistency results and asymptotic convergence rates for the proposed estimates of the derivative principal component scores and other components of the model are derived under a unified scheme for sparse or dense observations and mild conditions. We compare the proposed representations for derivatives with alternative approaches in simulation settings and also in a wallaby growth curve application. It emerges that representations using the proposed derivative principal component analysis recover the underlying derivatives more accurately compared to principal component analysis-based approaches especially in settings where the functional data are represented with only a very small number of components or are densely sampled. In a second wheat spectra classification example, derivative principal component scores were found to be more predictive for the protein content of wheat than the conventional functional principal component scores.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا