Do you want to publish a course? Click here

Quantum Monte Carlo simulation of BEC-impurity tunneling

69   0   0.0 ( 0 )
 Added by Vera Tiunova
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Polaron tunneling is a prominent example of a problem characterized by different energy scales, for which the standard quantum Monte Carlo methods face a slowdown problem. We propose a new quantum-tunneling Monte Carlo (QTMC) method which is free from this issue and can be used for a wide range of tunneling phenomena. We apply it to study an impurity interacting with a one-dimensional Bose-Einstein condensate and simultaneously trapped in an external double-well potential. Our scheme works for an arbitrary coupling between the particle and condensate and, at the same time, allows for an account of tunneling effects. We discover two distinct quasi-particle peaks associated, respectively, with the phonon-assisted tunneling and the self-trapping of the impurity, which are in a crossover regime for the system modeled. We observe and analyze changes in the weights and spectral positions of the peaks (or, equally, effective masses of the quasi-particles) when the coupling strength is increased. Possible experimental realizations using cold atoms are discussed.



rate research

Read More

We consider two large polaron systems that are described by a Fr{o}hlich type of Hamiltonian, namely the Bose-Einstein condensate (BEC) polaron in the continuum and the acoustic polaron in a solid. We present ground-state energies of these two systems calculated with the Diagrammatic Monte Carlo (DiagMC) method and with a Feynman all-coupling approach. The DiagMC method evaluates up to very high order a diagrammatic series for the polaron Greens function. The Feynman all-coupling approach is a variational method that has been used for a wide range of polaronic problems. For the acoustic and BEC polaron both methods provide remarkably similar non-renormalized ground-state energies that are obtained after introducing a finite momentum cutoff. For the renormalized ground-state energies of the BEC polaron, there are relatively large discrepancies between the DiagMC and the Feynman predictions. These differences can be attributed to the renormalization procedure for the contact interaction.
We explore two complementary modifications of the hybridization-expansion continuous-time Monte Carlo method, aiming at large multi-orbital quantum impurity problems. One idea is to compute the imaginary-time propagation using a matrix product states representation. We show that bond dimensions considerably smaller than the dimension of the Hilbert space are sufficient to obtain accurate results, and that this approach scales polynomially, rather than exponentially with the number of orbitals. Based on scaling analyses, we conclude that a matrix product state implementation will outperform the exact-diagonalization based method for quantum impurity problems with more than 12 orbitals. The second idea is an improved Monte Carlo sampling scheme which is applicable to all variants of the hybridization expansion method. We show that this so-called sliding window sampling scheme speeds up the simulation by at least an order of magnitude for a broad range of model parameters, with the largest improvements at low temperature.
We investigate macroscopic tunneling from an elongated quasi 1-d trap, forming a cigar shaped BEC. Using recently developed formalism we get the leading analytical approximation for the right hand side of the potential wall, i.e. outside the trap, and a formalism based on Wigner functions, for the left side of the potential wall, i.e. inside the BEC. We then present accomplished results of numerical calculations, which show a blip in the particle density traveling with an asymptotic shock velocity, as resulted from previous works on a dot-like trap, but with significant differences from the latter. Inside the BEC a pattern of a traveling dispersive shock wave is revealed. In the attractive case, we find trains of bright solitons frozen near the boundary.
The ground state properties of spin-polarized deuterium (D$downarrow$) at zero temperature are obtained by means of the diffusion Monte Carlo calculations within the fixed-node approximation. Three D$downarrow$ species have been investigated (D$downarrow_1$, D$downarrow_2$, D$downarrow_3$), corresponding respectively to one, two and three equally occupied nuclear spin states. Influence of the backflow correlations on the ground state energy of the systems is explored. The equilibrium densities for D$downarrow_2$ and D$downarrow_3$ liquids are obtained and compared with ones obtained in previous approximate prediction. The density and the pressure at which the gas-liquid phase transition occurs at $T$=0 is obtained for D$downarrow_1$.
236 - G. E. Astrakharchik 2014
This Dissertation presents results of a thorough study of ultracold bosonic and fermionic gases in three-dimensional and quasi-one-dimensional systems. Although the analyses are carried out within various theoretical frameworks (Gross-Pitaevskii, Bethe ansatz, local density approximation, etc.) the main tool of the study is the Quantum Monte Carlo method in different modifications (variational Monte Carlo, diffusion Monte Carlo, fixed-node Monte Carlo methods). We benchmark our Monte Carlo calculations by recovering known analytical results (perturbative theories in dilute limits, exactly solvable models, etc.) and extend calculations to regimes, where the results are so far unknown. In particular we calculate the equation of state and correlation functions for gases in various geometries and with various interatomic interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا