Microscopic quantum generalization of classical Li{e}nard oscillators


Abstract in English

Based on a system-reservoir model and an appropriate choice of nonlinear coupling, we have explored the microscopic quantum generalization of classical Li{e}nard systems. Making use of oscillator coherent states and canonical thermal distributions of the associated c-numbers, we have derived the quantum Langevin equation of the reduced system which admits of single or multiple limit cycles. It has been shown that detailed balance in the form of fluctuation-dissipation relation preserves the dynamical stability of the attractors even in case of vacuum excitation. The quant

Download