Do you want to publish a course? Click here

Nonequilibrium phases and phase transitions of the XY-model

123   0   0.0 ( 0 )
 Added by Tharnier Puel
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We obtain the steady-state phase diagram of a transverse field XY spin chain coupled at its ends to magnetic reservoirs held at different magnetic potentials. In the long-time limit, the magnetization bias across the system generates a current-carrying non-equilibrium steady-state. We characterize the different non-equilibrium phases as functions of the chains parameters and magnetic potentials, in terms of their correlation functions and entanglement content. The mixed-order transition, recently observed for the particular case of a transverse field Ising chain, is established to emerge as a generic out-of-equilibrium feature and its critical exponents are determined analytically. Results are also contrasted with those obtained in the limit of Markovian reservoirs. Our findings should prove helpful in establishing the properties of non-equilibrium phases and phase transitions of extended open quantum systems.



rate research

Read More

We examine the stability of marginally Anderson localized phase transitions between localized phases to the addition of many-body interactions, focusing in particular on the spin-glass to paramagnet transition in a disordered transverse field Ising model in one dimension. We find evidence for a perturbative instability of localization at finite energy densities once interactions are added, i.e. evidence for the relevance of interactions - in a renormalization group sense - to the non-interacting critical point governed by infinite randomness scaling. We introduce a novel diagnostic, the susceptibility of entanglement, which allows us to perturbatively probe the effect of adding interactions on the entanglement properties of eigenstates, and helps us elucidate the resonant processes that can cause thermalization. The susceptibility serves as a much more sensitive probe, and its divergence can detect the perturbative beginnings of an incipient instability even in regimes and system sizes for which conventional diagnostics point towards localization. We expect this new measure to be of independent interest for analyzing the stability of localization in a variety of different settings.
108 - Pablo Serna , J.T. Chalker , 2017
We find the complete phase diagram of a generalised XY model that includes half-vortices. The model possesses superfluid, pair-superfluid and disordered phases, separated by Kosterlitz-Thouless (KT) transitions for both the half-vortices and ordinary vortices, as well as an Ising-type transition. There also occurs an unusual deconfining phase transition, where the disordered to superfluid transition is of Ising rather than KT type. We show by analytical arguments and extensive numerical simulations that there is a point in the phase diagram where the KT transition line meets the deconfining Ising phase transition. We find that the latter extends into the disordered phase not as a phase transition, but rather solely as a deconfinement transition. It is best understood in the dual height model, where on one side of the transition height steps are bound into pairs while on the other they are unbound. We also extend the phase diagram of the dual model, finding both O(2) loop model and antiferromagnetic Ising transitions.
We establish a set of nonequilibrium quantum phase transitions in the Ising model driven under monochromatic nonadiabatic modulation of the transverse field. We show that besides the Ising-like critical behavior, the system exhibits an anisotropic transition which is absent in equilibrium. The nonequilibrium quantum phases correspond to states which are synchronized with the external control in the long-time dynamics.
Topological phase transitions in a three-dimensional (3D) topological insulator (TI) with an exchange field of strength $g$ are studied by calculating spin Chern numbers $C^pm(k_z)$ with momentum $k_z$ as a parameter. When $|g|$ exceeds a critical value $g_c$, a transition of the 3D TI into a Weyl semimetal occurs, where two Weyl points appear as critical points separating $k_z$ regions with different first Chern numbers. For $|g|<g_c$, $C^pm(k_z)$ undergo a transition from $pm 1$ to 0 with increasing $|k_z|$ to a critical value $k_z^{tiny C}$. Correspondingly, surface states exist for $|k_z| < k_z^{tiny C}$, and vanish for $|k_z| ge k_z^{tiny C}$. The transition at $|k_z| = k_z^{tiny C}$ is acompanied by closing of spin spectrum gap rather than energy gap.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا