Do you want to publish a course? Click here

Quantum smectic gauge theory

111   0   0.0 ( 0 )
 Added by Leo Radzihovsky
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a gauge theory formulation of a two-dimensional quantum smectic and its relatives, motivated by their realizations in correlated quantum matter. The description gives a unified treatment of phonons and topological defects, respectively encoded in a pair of coupled gauge fields and corresponding charges. The charges exhibit subdimensional constrained quantum dynamics and anomalously slow highly anisotropic diffusion of disclinations inside a smectic. This approach gives a transparent description of a multi-stage quantum melting transition of a two-dimensional commensurate crystal (through an incommensurate crystal - a supersolid) into a quantum smectic, that subsequently melts into a quantum nematic and isotropic superfluids, all in terms of a sequence of Higgs transitions.

rate research

Read More

Nematic phases, breaking spontaneously rotational symmetry, provide for ubiquitously observed states of matter in both classical and quantum systems. These nematic states may be further classified by their $N$--fold rotational invariance described by cyclic groups $C_N$ in 2+1D. Starting from the space groups of underlying $2d$ crystals, we present a general classification scheme incorporating $C_N$ nematic phases that arise from dislocation-mediated melting and discuss the conventional tensor order parameters. By coupling the $O(2)$ matter fields to the $Z_N$ lattice gauge theory, an unified $O(2)/Z_N$ lattice gauge theory is constructed in order to describe all these nematic phases. This lattice gauge theory is shown to reproduce the $C_N$ nematic-isotropic liquid phase transitions and contains an additional deconfined phase. Finally, using our $O(2)/Z_N$ gauge theory framework, we discuss phase transitions between different $C_N$ nematics.
We present a self-contained review of the theory of dislocation-mediated quantum melting at zero temperature in two spatial dimensions. The theory describes the liquid-crystalline phases with spatial symmetries in between a quantum crystalline solid and an isotropic superfluid: quantum nematics and smectics. It is based on an Abelian-Higgs-type duality mapping of phonons onto gauge bosons (stress photons), which encode for the capacity of the crystal to propagate stresses. Dislocations and disclinations, the topological defects of the crystal, are sources for the gauge fields and the melting of the crystal can be understood as the proliferation (condensation) of these defects, giving rise to the Anderson-Higgs mechanism on the dual side. For the liquid crystal phases, the shear sector of the gauge bosons becomes massive signaling that shear rigidity is lost. Resting on symmetry principles, we derive the phenomenological imaginary time actions of quantum nematics and smectics and analyze the full spectrum of collective modes. The quantum nematic is a superfluid having a true rotational Goldstone mode due to rotational symmetry breaking, and the origin of this deconfined mode is traced back to the crystalline phase. The two-dimensional quantum smectic turns out to be a dizzyingly anisotropic phase with the collective modes interpolating between the solid and nematic in a non-trivial way. We also consider electrically charged bosonic crystals and liquid crystals, and carefully analyze the electromagnetic response of the quantum liquid crystal phases. In particular, the quantum nematic is a real superconductor and shows the Meissner effect. Their special properties inherited from spatial symmetry breaking show up mostly at finite momentum, and should be accessible by momentum-sensitive spectroscopy.
The dislocation-mediated quantum melting of solids into quantum liquid crystals is extended from two to three spatial dimensions, using a generalization of boson-vortex or Abelian-Higgs duality. Dislocations are now Burgers-vector-valued strings that trace out worldsheets in spacetime while the phonons of the solid dualize into two-form (Kalb-Ramond) gauge fields. We propose an effective dual Higgs potential that allows for restoring translational symmetry in either one, two or three directions, leading to the quantum analogues of columnar, smectic or nematic liquid crystals. In these phases, transverse phonons turn into gapped, propagating modes while compressional stress remains massless. Rotational Goldstone modes emerge whenever translational symmetry is restored. We also consider electrically charged matter, and find amongst others that as a hard principle only two out of the possible three rotational Goldstone modes are observable using electromagnetic means.
163 - Guo-Zhu Liu , Wei Li , 2009
We study chiral phase transition and confinement of matter fields in (2+1)-dimensional U(1) gauge theory of massless Dirac fermions and scalar bosons. The vanishing scalar boson mass, $r=0$, defines a quantum critical point between the Higgs phase and the Coulomb phase. We consider only the critical point $r=0$ and the Coulomb phase with $r > 0$. The Dirac fermion acquires a dynamical mass when its flavor is less than certain critical value $N_{f}^{c}$, which depends quantitatively on the flavor $N_{b}$ and the scalar boson mass $r$. When $N_{f} < N_{f}^{c}$, the matter fields carrying internal gauge charge are all confined if $r eq 0$ but are deconfined at the quantum critical point $r = 0$. The system has distinct low-energy elementary excitations at the critical point $r=0$ and in the Coulomb phase with $r eq 0$. We calculate the specific heat and susceptibility of the system at $r=0$ and $r eq 0$, which can help to detect the quantum critical point and to judge whether dynamical fermion mass generation takes place.
We demonstrate several explicit duality mappings between elasticity of two-dimensional crystals and fracton tensor gauge theories, expanding on recent works by two of the present authors. We begin by dualizing the quantum elasticity theory of an ordinary commensurate crystal, which maps directly onto a fracton tensor gauge theory, in a natural tensor analogue of the conventional particle-vortex duality transformation of a superfluid. The transverse and longitudinal phonons of a crystal map onto the two gapless gauge modes of the tensor gauge theory, while the topological lattice defects map onto the gauge charges, with disclinations corresponding to isolated fractons and dislocations corresponding to dipoles of fractons. We use the classical limit of this duality to make new predictions for the finite-temperature phase diagram of fracton models, and provide a simpler derivation of the Halperin-Nelson-Young theory of thermal melting of two-dimensional solids. We extend this duality to incorporate bosonic statistics, which is necessary for a description of the quantum melting transitions. We thereby derive a hybrid vector-tensor gauge theory which describes a supersolid phase, hosting both crystalline and superfluid orders. The structure of this gauge theory puts constraints on the quantum phase diagram of bosons, and also leads to the concept of symmetry enriched fracton order. We formulate the extension of these dualities to systems breaking time-reversal symmetry. We also discuss the broader implications of these dualities, such as a possible connection between fracton phases and the study of interacting topological crystalline insulators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا