Do you want to publish a course? Click here

Communication Efficient Distributed Learning with Censored, Quantized, and Generalized Group ADMM

140   0   0.0 ( 0 )
 Added by Jihong Park
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we propose a communication-efficiently decentralized machine learning framework that solves a consensus optimization problem defined over a network of inter-connected workers. The proposed algorithm, Censored and Quantized Generalized GADMM (CQ-GGADMM), leverages the worker grouping and decentralized learning ideas of Group Alternating Direction Method of Multipliers (GADMM), and pushes the frontier in communication efficiency by extending its applicability to generalized network topologies, while incorporating link censoring for negligible updates after quantization. We theoretically prove that CQ-GGADMM achieves the linear convergence rate when the local objective functions are strongly convex under some mild assumptions. Numerical simulations corroborate that CQ-GGADMM exhibits higher communication efficiency in terms of the number of communication rounds and transmit energy consumption without compromising the accuracy and convergence speed, compared to the censored decentralized ADMM, and the worker grouping method of GADMM.



rate research

Read More

The lottery ticket hypothesis (LTH) claims that a deep neural network (i.e., ground network) contains a number of subnetworks (i.e., winning tickets), each of which exhibiting identically accurate inference capability as that of the ground network. Federated learning (FL) has recently been applied in LotteryFL to discover such winning tickets in a distributed way, showing higher accuracy multi-task learning than Vanilla FL. Nonetheless, LotteryFL relies on unicast transmission on the downlink, and ignores mitigating stragglers, questioning scalability. Motivated by this, in this article we propose a personalized and communication-efficient federated lottery ticket learning algorithm, coined CELL, which exploits downlink broadcast for communication efficiency. Furthermore, it utilizes a novel user grouping method, thereby alternating between FL and lottery learning to mitigate stragglers. Numerical simulations validate that CELL achieves up to 3.6% higher personalized task classification accuracy with 4.3x smaller total communication cost until convergence under the CIFAR-10 dataset.
We investigate fast and communication-efficient algorithms for the classic problem of minimizing a sum of strongly convex and smooth functions that are distributed among $n$ different nodes, which can communicate using a limited number of bits. Most previous communication-efficient approaches for this problem are limited to first-order optimization, and therefore have emph{linear} dependence on the condition number in their communication complexity. We show that this dependence is not inherent: communication-efficient methods can in fact have sublinear dependence on the condition number. For this, we design and analyze the first communication-efficient distributed variants of preconditioned gradient descent for Generalized Linear Models, and for Newtons method. Our results rely on a new technique for quantizing both the preconditioner and the descent direction at each step of the algorithms, while controlling their convergence rate. We also validate our findings experimentally, showing fast convergence and reduced communication.
In this paper, we propose a novel distributed alternating direction method of multipliers (ADMM) algorithm with synergetic communication and computation, called SCCD-ADMM, to reduce the total communication and computation cost of the system. Explicitly, in the proposed algorithm, each node interacts with only part of its neighboring nodes, the number of which is progressively determined according to a heuristic searching procedure, which takes into account both the predicted convergence rate and the communication and computation costs at each iteration, resulting in a trade-off between communication and computation. Then the node chooses its neighboring nodes according to an importance sampling distribution derived theoretically to minimize the variance with the latest information it locally stores. Finally, the node updates its local information with a new update rule which adapts to the number of communication nodes. We prove the convergence of the proposed algorithm and provide an upper bound of the convergence variance brought by randomness. Extensive simulations validate the excellent performances of the proposed algorithm in terms of convergence rate and variance, the overall communication and computation cost, the impact of network topology as well as the time for evaluation, in comparison with the traditional counterparts.
Large-scale distributed training of neural networks is often limited by network bandwidth, wherein the communication time overwhelms the local computation time. Motivated by the success of sketching methods in sub-linear/streaming algorithms, we introduce Sketched SGD, an algorithm for carrying out distributed SGD by communicating sketches instead of full gradients. We show that Sketched SGD has favorable convergence rates on several classes of functions. When considering all communication -- both of gradients and of updated model weights -- Sketched SGD reduces the amount of communication required compared to other gradient compression methods from $mathcal{O}(d)$ or $mathcal{O}(W)$ to $mathcal{O}(log d)$, where $d$ is the number of model parameters and $W$ is the number of workers participating in training. We run experiments on a transformer model, an LSTM, and a residual network, demonstrating up to a 40x reduction in total communication cost with no loss in final model performance. We also show experimentally that Sketched SGD scales to at least 256 workers without increasing communication cost or degrading model performance.
When the data is distributed across multiple servers, lowering the communication cost between the servers (or workers) while solving the distributed learning problem is an important problem and is the focus of this paper. In particular, we propose a fast, and communication-efficient decentralized framework to solve the distributed machine learning (DML) problem. The proposed algorithm, Group Alternating Direction Method of Multipliers (GADMM) is based on the Alternating Direction Method of Multipliers (ADMM) framework. The key novelty in GADMM is that it solves the problem in a decentralized topology where at most half of the workers are competing for the limited communication resources at any given time. Moreover, each worker exchanges the locally trained model only with two neighboring workers, thereby training a global model with a lower amount of communication overhead in each exchange. We prove that GADMM converges to the optimal solution for convex loss functions, and numerically show that it converges faster and more communication-efficient than the state-of-the-art communication-efficient algorithms such as the Lazily Aggregated Gradient (LAG) and dual averaging, in linear and logistic regression tasks on synthetic and real datasets. Furthermore, we propose Dynamic GADMM (D-GADMM), a variant of GADMM, and prove its convergence under the time-varying network topology of the workers.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا