Do you want to publish a course? Click here

Crossover from 2D ferromagnetic insulator to wide bandgap quantum anomalous Hall insulator in ultra-thin MnBi2Te4

103   0   0.0 ( 0 )
 Added by Chi Xuan Trang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Intrinsic magnetic topological insulators offer low disorder and large magnetic bandgaps for robust magnetic topological phases operating at higher temperatures. By controlling the layer thickness, emergent phenomena such as the Quantum Anomalous Hall (QAH) effect and axion insulator phases have been realised. These observations occur at temperatures significantly lower than the Neel temperature of bulk MnBi2Te4, and measurement of the magnetic energy gap at the Dirac point in ultra-thin MnBi2Te4 has yet to be achieved. Critical to achieving the promise of this system is a direct measurement of the layer-dependent energy gap and verifying whether the gap is magnetic in the QAH phase. Here we utilise temperature dependent angle-resolved photoemission spectroscopy to study epitaxial ultra-thin MnBi2Te4. We directly observe a layer dependent crossover from a 2D ferromagnetic insulator with a bandgap greater than 780 meV in one septuple layer (1 SL) to a QAH insulator with a large energy gap (>100 meV) at 8 K in 3 and 5 SL MnBi2Te4. The QAH gap is confirmed to be magnetic in origin, as it abruptly diminishes with increasing temperature above 8 K. The direct observation of a large magnetic energy gap in the QAH phase of few-SL MnBi2Te4 is promising for further increasing the operating temperature of QAH materials.



rate research

Read More

The polarity-tunable anomalous Hall effect (AHE) is useful for electronic device applications. Here in a magnetic topological insulator MnBi2Te4 grown by molecular beam epitaxy, we report the polarity change of the AHE by increasing the temperature or tuning the gate bias. This is possible because the anomalous Hall response is composed of two competing contributions with opposite polarities. The negative contribution is intrinsic to MnBi2Te4, follows an ambipolar gate response and has a larger coercivity with increasing thickness. Meanwhile, the positive one has a coercivity that is about one order of magnitude greater than the negative one, dominates the Hall response at higher temperatures, is more tunable by a gate bias and vanishes by increasing the thickness of the thin film. One possible explanation for the additional positive AHE is an extra surface ferromagnetism caused by the surface-state-mediated RKKY interaction among magnetic impurities on the surface. Our work provides the understanding of the AHE of MnBi2Te4, and paves the way for many device applications, e.g. energy-efficient voltage-controlled memory.
Combining magnetism and nontrivial band topology gives rise to quantum anomalous Hall (QAH) insulators and exotic quantum phases such as the QAH effect where current flows without dissipation along quantized edge states. Inducing magnetic order in topological insulators via proximity to a magnetic material offers a promising pathway towards achieving QAH effect at high temperature for lossless transport applications. One promising architecture involves a sandwich structure comprising two single layers of MnBi2Te4 (a 2D ferromagnetic insulator) with ultra-thin Bi2Te3 in the middle, and is predicted to yield a robust QAH insulator phase with a bandgap well above thermal energy at room temperature (25 meV). Here we demonstrate the growth of a 1SL MnBi2Te4 / 4QL Bi2Te3 /1SL MnBi2Te4 heterostructure via molecular beam epitaxy, and probe the electronic structure using angle resolved photoelectron spectroscopy. We observe strong hexagonally warped massive Dirac Fermions and a bandgap of 75 meV. The magnetic origin of the gap is confirmed by the observation of broken time reversal symmetry and the exchange-Rashba effect, in excellent agreement with density functional theory calculations. These findings provide insights into magnetic proximity effects in topological insulators, that will move lossless transport in topological insulators towards higher temperature.
The combination of topology and magnetism is attractive to produce exotic quantum matters, such as the quantum anomalous Hall state, axion insulators and the magnetic Weyl semimetals. MnBi2Te4, as an intrinsic magnetic topological insulator, provides a platform for the realization of various topological phases. Here we report the intermediate Hall steps in the magnetic hysteresis of MnBi2Te4, where four distinguishable magnetic memory states at zero magnetic field are revealed. The gate and temperature dependence of the magnetic intermediate states indicates the noncollinear spin structure in MnBi2Te4, which can be attributed to the Dzyaloshinskii-Moriya interaction as the coexistence of strong spin-orbit coupling and local inversion symmetry breaking on the surface. Moreover, these multiple magnetic memory states can be programmatically switched among each other through applying designed pulses of magnetic field. Our results provide new insights of the influence of bulk topology on the magnetic states, and the multiple memory states should be promising for spintronic devices.
133 - Yang Ma , Yu Yun , Yuehui Li 2019
The experimental observation of quantum anomalous Hall effect (QAHE) in magnetic topological insulators has stimulated enormous interest in condensed-matter physics and materials science. For the purpose of realizing high-temperature QAHE, several material candidates have been proposed, among which the interface states in the CdO/ferromagnetic insulator heterostructures are particularly interesting and favorable for technological applications. Here, we report the experimental observation of the interfacial ferromagnetism and anomalous Hall effect in the Fe3O4/CdO/Fe3O4 heterostructures grown via oxide molecular-beam epitaxy. Systematical variation of the CdO thickness reveals the interface ferromagnetism as the major cause for the observed planar magnetoresistance and anomalous Hall effect. Our results might pave the way to engineer oxide interface states for the exploration of QAHE towards exotic quantum-physical phenomena and potential applications.
Recent years have witnessed tremendous success in the discovery of topological states of matter. Particularly, sophisticated theoretical methods in time-reversal-invariant topological phases have been developed, leading to the comprehensive search of crystal database and the prediction of thousands of new topological materials. In contrast, the discovery of magnetic topological phases that break time reversal is still limited to several exemplary materials because the coexistence of magnetism and topological electronic band structure is rare in a single compound. To overcome this challenge, we propose an alternative approach to realize the quantum anomalous Hall (QAH) effect, a typical example of magnetic topological phase, via engineering two-dimensional (2D) magnetic van der Waals heterojunctions. Instead of a single magnetic topological material, we search for the combinations of two 2D (typically trivial) magnetic insulator compounds with specific band alignment so that they can together form a type-III heterojunction with topologically non-trivial band structure. By combining the data-driven materials search, first principles calculations, and the symmetry-based analytical models, we identify 8 type-III heterojunctions consisting of 2D ferromagnetic insulator materials from a family of 2D monolayer MXY compounds (M = metal atoms, X = S, Se, Te, Y = F, Cl, Br, I) as a set of candidates for the QAH effect. In particular, we directly calculate the topological invariant (Chern number) and chiral edge states in the MnNF/MnNCl heterojunction with ferromagnetic stacking. This work illustrates how data-driven material science can be combined with symmetry-based physical principles to guide the search for novel heterojunction-based quantum materials hosting the QAH effect and other exotic quantum states in general.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا