Do you want to publish a course? Click here

Nuclear resonance fluorescence of $^{208}$Pb in heavy-ion colliders

87   0   0.0 ( 0 )
 Added by Igor Pshenichnov
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In ultraperipheral collisions (UPC) of nuclei the impact of Lorentz-contracted electromagnetic fields of collision partners leads to their excitations. In case of heavy nuclei the emission of neutrons is a main deexcitation channel and forward neutrons emitted in UPC were detected at the Relativistic Heavy-Ion Collider (RHIC) and at the Large Hadron Collider (LHC) by means of Zero Degree Calorimeters. However, the excitation of low-lying discrete nuclear states is also possible in UPC below the neutron separation energy. In this work by means of the Weizsacker-Williams method the data on nuclear resonance fluorescence (NRF) induced by real photons in 208 Pb are used to model the excitations of discrete levels in colliding nuclei. Due to Lorentz boosts one can expect that deexcitation photons with energies up to 40 GeV and 300 GeV are emitted in very forward direction, respectively, at the LHC and at the Future Circular Collider (FCC-hh). Energy, rapidity and angular distributions of such photons are calculated in the laboratory system, which can be used for monitoring of collider luminosity or triggering particle production in UPC.



rate research

Read More

169 - Jun Xu 2021
The remaining uncertainties of isovector nuclear interactions call for reliable experimental measurements of isovector probes in finite nuclei. Based on the Bayesian analysis, although the neutron-skin thickness data or the isovector giant dipole resonance data in $^{208}$Pb can constrain only one isovector interaction parameter, correlations between other parameters are built. Using combined data of both the neutron-skin thickness and the isovector giant dipole resonance helps to constrain significantly all isovector interaction parameters, thus serves as a useful way in the future analysis.
72 - J. M. Yao , K. Hagino 2016
We discuss anharmonicity of the multi-octupole-phonon states in $^{208}$Pb based on a covariant density functional theory, by fully taking into account the interplay between the quadrupole and the octupole degrees of freedom. Our results indicate the existence of a large anharmonicity in the transition strengths, even though the excitation energies are similar to those in the harmonic limit. We also show that the quadrupole-shape fluctuation significantly enhances the fragmentation of the two-octupole-phonon states in $^{208}$Pb. Using those transition strengths as inputs to coupled channels calculations, we then discuss the fusion reaction of $^{16}$O+$^{208}$Pb at energies around the Coulomb barrier. We show that the anharmonicity of the octupole vibrational excitation considerably improves previous coupled-channels calculations in the harmonic oscillator limit, significantly reducing the height of the main peak in the fusion barrier distribution.
We present and discuss numerical predictions for the neutron density distribution of $^{208}$Pb using various non-relativistic and relativistic mean-field models for the nuclear structure. Our results are compared with the very recent pion photoproduction data from Mainz. The parity-violating asymmetry parameter for elastic electron scattering at the kinematics of the PREX experiment at JLab and the neutron skin thickness are compared with the available data. We consider also the dependence between the neutron skin and the parameters of the expansion of the symmetry energy.
114 cross sections for nuclide production in a 1.0 GeV proton-irradiated thin 208Pb target have been measured by the direct gamma spectrometry method using a high-resolution Ge detector. The gamma spectra were processed by the GENIE-2000 code. The ITEP-developed SIGMA code was used together with the PCNUDAT nuclear decay database to identify the gamma lines and to determine the cross sections. The 27Al(p,x)22Na reaction was used to monitor the proton flux. Results of a feasibility study of the auxiliary 27Al(p,x)24Na and 27Al(p,x)7Be monitor reactions in the 0.07-2.6 GeV proton-energy range are presented as well. Most of the experimental data have been analyzed by the LAHET (with ISABEL and Bertini options), CEM95, CEM2k, INUCL, CASCADE, CASCADE/INPE, and YIELDX codes that simulate hadron-nucleus interactions.
New experimental data on the neutron single-particle character of the Pygmy Dipole Resonance (PDR) in $^{208}$Pb are presented. They were obtained from $(d,p)$ and resonant proton scattering experiments performed at the Q3D spectrograph of the Maier-Leibnitz Laboratory in Garching, Germany. The new data are compared to the large suite of complementary, experimental data available for $^{208}$Pb and establish $(d,p)$ as an additional, valuable, experimental probe to study the PDR and its collectivity. Besides the single-particle character of the states, different features of the strength distributions are discussed and compared to Large-Scale-Shell-Model (LSSM) and energy-density functional (EDF) plus Quasiparticle-Phonon Model (QPM) theoretical approaches to elucidate the microscopic structure of the PDR in $^{208}$Pb.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا