No Arabic abstract
We explore a new paradigm to study dissipative dark matter models using gravitational-wave observations. We consider a dark atomic model which predicts the formation of binary black holes such as GW190425 while obeying constraints from large-scale structure, and improving on the missing satellite problem. Using LIGO and Virgo gravitational-wave data from 12th September 2015 to 1st October 2019, we show that interpreting GW190425 as a dark matter black-hole binary limits the Chandrasekhar mass for dark matter to be below 1.4 $M_odot$ at $> 99.9%$ confidence implying that the dark proton is heavier than 0.95 GeV, while also suggesting that the molecular energy-level spacing of dark molecules lies near $10^{-3}$ eV and constraining the cooling rate of dark matter at low temperatures.
Wave Dark Matter (WaveDM) has recently gained attention as a viable candidate to account for the dark matter content of the Universe. In this paper we explore the extent to which dark matter halos in this model, and under what conditions, are able to reproduce strong lensing systems. First, we analytically explore the lensing properties of the model -- finding that a pure WaveDM density profile, a soliton profile, produces a weaker lensing effect than other similar cored profiles. Then we analyze models with a soliton embedded in an NFW profile, as has been found in numerical simulations of structure formation. We use a benchmark model with a boson mass of $m_a=10^{-22}{rm eV}$, for which we see that there is a bi-modality in the contribution of the external NFW part of the profile, and actually some of the free parameters associated with it are not well constrained. We find that for configurations with boson masses $10^{-23}$ -- $10^{-22}{rm eV}$, a range of masses preferred by dwarf galaxy kinematics, the soliton profile alone can fit the data but its size is incompatible with the luminous extent of the lens galaxies. Likewise, boson masses of the order of $10^{-21}{rm eV}$, which would be consistent with Lyman-$alpha$ constraints and consist of more compact soliton configurations, necessarily require the NFW part in order to reproduce the observed Einstein radii. We then conclude that lens systems impose a conservative lower bound $m_a > 10^{-24}$ and that the NFW envelope around the soliton must be present to satisfy the observational requirements.
In this white paper, we discuss the prospects for characterizing and identifying dark matter using gravitational waves, covering a wide range of dark matter candidate types and signals. We argue that present and upcoming gravitational wave probes offer unprecedented opportunities for unraveling the nature of dark matter and we identify the most urgent challenges and open problems with the aim of encouraging a strong community effort at the interface between these two exciting fields of research.
We calculate the accurate spectrum of the stochastic gravitational wave background from U(1) gauge fields produced by axion dark matter. The explosive production of gauge fields soon invalidates the applicability of the linear analysis and one needs nonlinear schemes. We make use of numerical lattice simulations to properly follow the nonlinear dynamics such as backreaction and rescattering which gives important contributions to the emission of gravitational waves. It turns out that the axion with the decay constant $f sim 10^{16}$ GeV which gives the correct dark matter abundance predicts the circularly polarized gravitational wave signature detectable by SKA. We also show that the resulting gravitational wave spectrum has a potential to explain NANOGrav 12.5 year data.
The black hole merging rates inferred after the gravitational-wave detection by Advanced LIGO/VIRGO and the relatively high mass of the progenitors are consistent with models of dark matter made of massive primordial black holes (PBH). PBH binaries emit gravitational waves in a broad range of frequencies that will be probed by future space interferometers (LISA) and pulsar timing arrays (PTA). The amplitude of the stochastic gravitational-wave background expected for PBH dark matter is calculated taking into account various effects such as initial eccentricity of binaries, PBH velocities, mass distribution and clustering. It allows a detection by the LISA space interferometer, and possibly by the PTA of the SKA radio-telescope. Interestingly, one can distinguish this background from the one of non-primordial massive binaries through a specific frequency dependence, resulting from the maximal impact parameter of binaries formed by PBH capture, depending on the PBH velocity distribution and their clustering properties. Moreover, we find that the gravitational wave spectrum is boosted by the width of PBH mass distribution, compared with that of the monochromatic spectrum. The current PTA constraints already rule out broad-mass PBH models covering more than three decades of masses, but evading the microlensing and CMB constraints due to clustering.
Modified dispersion relations from effective field theory are shown to alter the Chandrasekhar mass limit. At exceptionally high densities, the modifications affect the pressure of a degenerate electron gas and can increase or decrease the mass limit, depending on the sign of the modifications. These changes to the mass limit are unlikely to be relevant for the astrophysics of white dwarf or neutron stars due to well-known dynamical instabilities that occur at lower densities. Generalizations to frameworks other than effective field theory are discussed.