Do you want to publish a course? Click here

The NANOGrav 12.5-year Data Set: Search For An Isotropic Stochastic Gravitational-Wave Background

280   0   0.0 ( 0 )
 Added by Joseph Simon
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We search for an isotropic stochastic gravitational-wave background (GWB) in the $12.5$-year pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves. Our analysis finds strong evidence of a stochastic process, modeled as a power-law, with common amplitude and spectral slope across pulsars. The Bayesian posterior of the amplitude for an $f^{-2/3}$ power-law spectrum, expressed as the characteristic GW strain, has median $1.92 times 10^{-15}$ and $5%$--$95%$ quantiles of $1.37$--$2.67 times 10^{-15}$ at a reference frequency of $f_mathrm{yr} = 1 ~mathrm{yr}^{-1}$. The Bayes factor in favor of the common-spectrum process versus independent red-noise processes in each pulsar exceeds $10,000$. However, we find no statistically significant evidence that this process has quadrupolar spatial correlations, which we would consider necessary to claim a GWB detection consistent with general relativity. We find that the process has neither monopolar nor dipolar correlations, which may arise from, for example, reference clock or solar system ephemeris systematics, respectively. The amplitude posterior has significant support above previously reported upper limits; we explain this in terms of the Bayesian priors assumed for intrinsic pulsar red noise. We examine potential implications for the supermassive black hole binary population under the hypothesis that the signal is indeed astrophysical in nature.



rate research

Read More

We search for an isotropic stochastic gravitational-wave background (GWB) in the newly released $11$-year dataset from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). While we find no significant evidence for a GWB, we place constraints on a GWB from a population of supermassive black-hole binaries, cosmic strings, and a primordial GWB. For the first time, we find that the GWB upper limits and detection statistics are sensitive to the Solar System ephemeris (SSE) model used, and that SSE errors can mimic a GWB signal. We developed an approach that bridges systematic SSE differences, producing the first PTA constraints that are robust against SSE uncertainties. We thus place a $95%$ upper limit on the GW strain amplitude of $A_mathrm{GWB}<1.45times 10^{-15}$ at a frequency of $f=1$ yr$^{-1}$ for a fiducial $f^{-2/3}$ power-law spectrum, and with inter-pulsar correlations modeled. This is a factor of $sim 2$ improvement over the NANOGrav $9$-year limit, calculated using the same procedure. Previous PTA upper limits on the GWB will need revision in light of SSE systematic uncertainties. We use our constraints to characterize the combined influence on the GWB of the stellar mass-density in galactic cores, the eccentricity of SMBH binaries, and SMBH--galactic-bulge scaling relationships. We constrain cosmic-string tension using recent simulations, yielding an SSE-marginalized $95%$ upper limit on the cosmic string tension of $Gmu < 5.3times 10^{-11}$---a factor of $sim 2$ better than the published NANOGrav $9$-year constraints. Our SSE-marginalized $95%$ upper limit on the energy density of a primordial GWB (for a radiation-dominated post-inflation Universe) is $Omega_mathrm{GWB}(f)h^2<3.4times10^{-10}$.
An ensemble of inspiraling supermassive black hole binaries should produce a stochastic background of very low frequency gravitational waves. This stochastic background is predicted to be a power law, with a spectral index of -2/3, and it should be detectable by a network of precisely timed millisecond pulsars, widely distributed on the sky. This paper reports a new time slicing analysis of the 11-year data release from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) using 34 millisecond pulsars. Methods to flag potential false positive signatures are developed, including techniques to identify responsible pulsars. Mitigation strategies are then presented. We demonstrate how an incorrect noise model can lead to spurious signals, and show how independently modeling noise across 30 Fourier components, spanning NANOGravs frequency range, effectively diagnoses and absorbs the excess power in gravitational-wave searches. This results in a nominal, and expected, progression of our gravitational-wave statistics. Additionally we show that the first interstellar medium event in PSR J1713+0747 pollutes the common red noise process with low-spectral index noise, and use a tailored noise model to remove these effects.
We perform the first search for an isotropic non-tensorial gravitational-wave background (GWB) allowed in general metric theories of gravity in the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 12.5-year data set. By modeling the GWB as a power-law spectrum, we find strong Bayesian evidence for a spatially correlated process with scalar transverse (ST) correlations whose Bayes factor versus the spatially uncorrelated common-spectrum process is $99pm 7$, but no statistically significant evidence for the tensor transverse, vector longitudinal and scalar longitudinal polarization modes. The median and the $90%$ equal-tail amplitudes of ST mode are $mathcal{A}_{mathrm{ST}}= 1.06^{+0.35}_{-0.28} times 10^{-15}$, or equivalently the energy density parameter per logarithm frequency is $Omega_{mathrm{GW}}^{mathrm{ST}} = 1.54^{+1.20}_{-0.71} times 10^{-9}$, at frequency of 1/year.
We compute upper limits on the nanohertz-frequency isotropic stochastic gravitational wave background (GWB) using the 9-year data release from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration. We set upper limits for a GWB from supermassive black hole binaries under power law, broken power law, and free spectral coefficient GW spectrum models. We place a 95% upper limit on the strain amplitude (at a frequency of yr$^{-1}$) in the power law model of $A_{rm gw} < 1.5times 10^{-15}$. For a broken power law model, we place priors on the strain amplitude derived from simulations of Sesana (2013) and McWilliams et al. (2014). We find that the data favor a broken power law to a pure power law with odds ratios of 22 and 2.2 to one for the McWilliams and Sesana prior models, respectively. The McWilliams model is essentially ruled out by the data, and the Sesana model is in tension with the data under the assumption of a pure power law. Using the broken power-law analysis we construct posterior distributions on environmental factors that drive the binary to the GW-driven regime including the stellar mass density for stellar-scattering, mass accretion rate for circumbinary disk interaction, and orbital eccentricity for eccentric binaries, marking the first time that the shape of the GWB spectrum has been used to make astrophysical inferences. We then place the most stringent limits so far on the energy density of relic GWs, $Omega_mathrm{gw}(f),h^2 < 4.2 times 10^{-10}$, yielding a limit on the Hubble parameter during inflation of $H_*=1.6times10^{-2}~m_{Pl}$, where $m_{Pl}$ is the Planck mass. Our limit on the cosmic string GWB, $Omega_mathrm{gw}(f), h^2 < 2.2 times 10^{-10}$, translates to a conservative limit of $Gmu<3.3times 10^{-8}$ - a factor of 4 better than the joint Planck and high-$l$ CMB data from other experiments.
We extract interstellar scintillation parameters for pulsars observed by the NANOGrav radio pulsar timing program. Dynamic spectra for the observing epochs of each pulsar were used to obtain estimates of scintillation timescales, scintillation bandwidths, and the corresponding scattering delays using a stretching algorithm to account for frequency-dependent scaling. We were able to measure scintillation bandwidths for 28 pulsars at 1500 MHz and 15 pulsars at 820 MHz. We examine scaling behavior for 17 pulsars and find power-law indices ranging from $-0.7$ to $-3.6$, though these may be biased shallow due to insufficient frequency resolution at lower frequencies. We were also able to measure scintillation timescales for six pulsars at 1500 MHz and seven pulsars at 820 MHz. There is fair agreement between our scattering delay measurements and electron-density model predictions for most pulsars. We derive interstellar scattering-based transverse velocities assuming isotropic scattering and a scattering screen halfway between the pulsar and earth. We also estimate the location of the scattering screens assuming proper motion and interstellar scattering-derived transverse velocities are equal. We find no correlations between variations in scattering delay and either variations in dispersion measure or flux density. For most pulsars for which scattering delays were measurable, we find that time of arrival uncertainties for a given epoch are larger than our scattering delay measurements, indicating that variable scattering delays are currently subdominant in our overall noise budget but are important for achieving precisions of tens of ns or less.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا