Do you want to publish a course? Click here

An Experimentally Driven Automated Machine Learned lnter-Atomic Potential for a Refractory Oxide

68   0   0.0 ( 0 )
 Added by Ganesh Sivaraman
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Understanding the structure and properties of refractory oxides are critical for high temperature applications. In this work, a combined experimental and simulation approach uses an automated closed loop via an active-learner, which is initialized by X-ray and neutron diffraction measurements, and sequentially improves a machine-learning model until the experimentally predetermined phase space is covered. A multi-phase potential is generated for a canonical example of the archetypal refractory oxide, HfO2, by drawing a minimum number of training configurations from room temperature to the liquid state at ~2900oC. The method significantly reduces model development time and human effort.



rate research

Read More

Accuracy of molecular dynamics simulations depends crucially on the interatomic potential used to generate forces. The gold standard would be first-principles quantum mechanics (QM) calculations, but these become prohibitively expensive at large simulation scales. Machine learning (ML) based potentials aim for faithful emulation of QM at drastically reduced computational cost. The accuracy and robustness of an ML potential is primarily limited by the quality and diversity of the training dataset. Using the principles of active learning (AL), we present a highly automated approach to dataset construction. The strategy is to use the ML potential under development to sample new atomic configurations and, whenever a configuration is reached for which the ML uncertainty is sufficiently large, collect new QM data. Here, we seek to push the limits of automation, removing as much expert knowledge from the AL process as possible. All sampling is performed using MD simulations starting from an initially disordered configuration, and undergoing non-equilibrium dynamics as driven by time-varying applied temperatures. We demonstrate this approach by building an ML potential for aluminum (ANI-Al). After many AL iterations, ANI-Al teaches itself to predict properties like the radial distribution function in melt, liquid-solid coexistence curve, and crystal properties such as defect energies and barriers. To demonstrate transferability, we perform a 1.3M atom shock simulation, and show that ANI-Al predictions agree very well with DFT calculations on local atomic environments sampled from the nonequilibrium dynamics. Interestingly, the configurations appearing in shock appear to have been well sampled in the AL training dataset, in a way that we illustrate visually.
We propose a novel active learning scheme for automatically sampling a minimum number of uncorrelated configurations for fitting the Gaussian Approximation Potential (GAP). Our active learning scheme consists of an unsupervised machine learning (ML) scheme coupled to Bayesian optimization technique that evaluates the GAP model. We apply this scheme to a Hafnium dioxide (HfO2) dataset generated from a melt-quench ab initio molecular dynamics (AIMD) protocol. Our results show that the active learning scheme, with no prior knowledge of the dataset is able to extract a configuration that reaches the required energy fit tolerance. Further, molecular dynamics (MD) simulations performed using this active learned GAP model on 6144-atom systems of amorphous and liquid state elucidate the structural properties of HfO2 with near ab initio precision and quench rates (i.e. 1.0 K/ps) not accessible via AIMD. The melt and amorphous x-ray structural factors generated from our simulation are in good agreement with experiment. Additionally, the calculated diffusion constants are in good agreement with previous ab initio studies.
Kernel ridge regression is used to approximate the kinetic energy of non-interacting fermions in a one-dimensional box as a functional of their density. The properties of different kernels and methods of cross-validation are explored, and highly accurate energies are achieved. Accurate {em constrained optimal densities} are found via a modified Euler-Lagrange constrained minimization of the total energy. A projected gradient descent algorithm is derived using local principal component analysis. Additionally, a sparse grid representation of the density can be used without degrading the performance of the methods. The implications for machine-learned density functional approximations are discussed.
126 - Ke Liu , Zekun Ni , Zhenyu Zhou 2021
Molecular modeling is an important topic in drug discovery. Decades of research have led to the development of high quality scalable molecular force fields. In this paper, we show that neural networks can be used to train a universal approximator for energy potential functions. By incorporating a fully automated training process we have been able to train smooth, differentiable, and predictive potential functions on large-scale crystal structures. A variety of tests have also been performed to show the superiority and versatility of the machine-learned model.
To fully leverage the power of image simulation to corroborate and explain patterns and structures in atomic resolution microscopy (e.g., electron and scanning probe), an initial correspondence between the simulation and experimental image must be established at the outset of further high accuracy simulations or calculations. Furthermore, if simulation is to be used in context of highly automated processes or high-throughput optimization, the process of finding this correspondence itself must be automated. In this work, we introduce ingrained, an open-source automation framework which solves for this correspondence and fuses atomic resolution image simulations into the experimental images to which they correspond. We describe herein the overall ingrained workflow, focusing on its application to interface structure approximations, and the development of an experimentally rationalized forward model for scanning tunneling microscopy simulation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا