Do you want to publish a course? Click here

Probabilistic analysis of algorithms for cost constrained minimum weighted combinatorial objects

260   0   0.0 ( 0 )
 Added by Alan Frieze
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We consider cost constrain



rate research

Read More

We introduce the study of forcing sets in mathematical origami. The origami material folds flat along straight line segments called creases, each of which is assigned a folding direction of mountain or valley. A subset $F$ of creases is forcing if the global folding mountain/valley assignment can be deduced from its restriction to $F$. In this paper we focus on one particular class of foldable patterns called Miura-ori, which divide the plane into congruent parallelograms using horizontal lines and zig-zag vertical lines. We develop efficient algorithms for constructing a minimum forcing set of a Miura-ori map, and for deciding whether a given set of creases is forcing or not. We also provide tight bounds on the size of a forcing set, establishing that the standard mountain-valley assignment for the Miura-ori is the one that requires the most creases in its forcing sets. Additionally, given a partial mountain/valley assignment to a subset of creases of a Miura-ori map, we determine whether the assignment domain can be extended to a locally flat-foldable pattern on all the creases. At the heart of our results is a novel correspondence between flat-foldable Miura-ori maps and $3$-colorings of grid graphs.
87 - David Steurer 2006
Many load balancing problems that arise in scientific computing applications ask to partition a graph with weights on the vertices and costs on the edges into a given number of almost equally-weighted parts such that the maximum boundary cost over all parts is small. Here, this partitioning problem is considered for bounded-degree graphs G=(V,E) with edge costs c: E->R+ that have a p-separator theorem for some p>1, i.e., any (arbitrarily weighted) subgraph of G can be separated into two parts of roughly the same weight by removing a vertex set S such that the edges incident to S in the subgraph have total cost at most proportional to (SUM_e c^p_e)^(1/p), where the sum is over all edges e in the subgraph. We show for all positive integers k and weights w that the vertices of G can be partitioned into k parts such that the weight of each part differs from the average weight by less than MAX{w_v; v in V}, and the boundary edges of each part have cost at most proportional to (SUM_e c_e^p/k)^(1/p) + MAX_e c_e. The partition can be computed in time nearly proportional to the time for computing a separator S of G. Our upper bound on the boundary costs is shown to be tight up to a constant factor for infinitely many instances with a broad range of parameters. Previous results achieved this bound only if one has c=1, w=1, and one allows parts with weight exceeding the average by a constant fraction.
525 - Tyler King , Michael Soltys 2021
Shortest path algorithms have played a key role in the past century, paving the way for modern day GPS systems to find optimal routes along static systems in fractions of a second. One application of these algorithms includes optimizing the total dis tance of power lines (specifically in star topological configurations). Due to the relevancy of discovering well-connected electrical systems in certain areas, finding a minimum path that is able to account for geological features would have far-reaching consequences in lowering the cost of electric power transmission. We initialize our research by proving the convex hull as an effective bounding mechanism for star topological minimum path algorithms. Building off this bounding, we propose novel algorithms to manage certain cases that lack existing methods (weighted regions and obstacles) by discretizing Euclidean space into squares and combining pre-existing algorithms that calculate local minimums that we believe have a possibility of being the absolute minimum. We further designate ways to evaluate iterations necessary to reach some level of accuracy. Both of these novel algorithms fulfill certain niches that past literature does not cover.
A forbidden transition graph is a graph defined together with a set of permitted transitions i.e. unordered pair of adjacent edges that one may use consecutively in a walk in the graph. In this paper, we look for the smallest set of transitions needed to be able to go from any vertex of the given graph to any other. We prove that this problem is NP-hard and study approximation algorithms. We develop theoretical tools that help to study this problem.
We develop an approximation algorithm for the partition function of the ferromagnetic Potts model on graphs with a small-set expansion condition, and as a step in the argument we give a graph partitioning algorithm with expansion and minimum degree conditions on the subgraphs induced by each part. These results extend previous work of Jenssen, Keevash, and Perkins (2019) on the Potts model and related problems in expander graphs, and of Oveis Gharan and Trevisan (2014) on partitioning into expanders.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا