No Arabic abstract
Necessary and sufficient conditions are obtained for the infinitesimal rigidity of braced grids in the plane with respect to non-Euclidean norms. Component rectangles of the grid may carry 0, 1 or 2 diagonal braces, and the combinatorial part of the conditions is given in terms of a matroid for the bicoloured bipartite multigraph defined by the braces.
A bar-joint framework $(G,p)$ in a (non-Euclidean) real normed plane $X$ is the combination of a finite, simple graph $G$ and a placement $p$ of the vertices in $X$. A framework $(G,p)$ is globally rigid in $X$ if every other framework $(G,q)$ in $X$ with the same edge lengths as $(G,p)$ arises from an isometry of $X$. The weaker property of local rigidity in normed planes (where only $(G,q)$ within a neighbourhood of $(G,p)$ are considered) has been studied by several researchers over the last 5 years after being introduced by Kitson and Power for $ell_p$-norms. However global rigidity is an unexplored area for general normed spaces, despite being intensely studied in the Euclidean context by many groups over the last 40 years. In order to understand global rigidity in $X$, we introduce new generalised rigid body motions in normed planes where the norm is determined by an analytic function. This theory allows us to deduce several geometric and combinatorial results concerning the global rigidity of bar-joint frameworks in $X$.
This is a survey on nondiscrete euclidean buildings, with a focus on metric properties of these spaces.
We study the Wasserstein space (with quadratic cost) of Euclidean spaces as an intrinsic metric space. In particular we compute their isometry groups. Surprisingly, in the case of the line, there exists a (unique) exotic isometric flow. This contrasts with the case of higher-dimensional Euclidean spaces, where all isometries of the Wasserstein space preserve the shape of measures. We also study the curvature and various ranks of these spaces.
Four points ordered in the positive order on the unit circle determine the vertices of a quadrilateral, which is considered either as a euclidean or as a hyperbolic quadrilateral depending on whether the lines connecting the vertices are euclidean or hyperbolic lines. In the case of hyperbolic lines, this type of quadrilaterals are called ideal quadrilaterals. Our main result gives a euclidean counterpart of an earlier result on the hyperbolic distances between the opposite sides of ideal quadrilaterals. The proof is based on computations involving hyperbolic geometry. We also found a new formula for the hyperbolic midpoint of a hyperbolic geodesic segment in the unit disk. As an application of some geometric properties, we provided a euclidean construction of the symmetrization of random four points on the unit circle with respect to a diameter which preserves the absolute cross ratio of quadruples.
Let $G$ be a $3$-connected graph with $n$ vertices and $m$ edges. Let $mathbf{p}$ be a randomly chosen mapping of these $n$ vertices to the integer range $[1..2^b]$ for $bge m^2$. Let $mathbf{l}$ be the vector of $m$ Euclidean lengths of $G$s edges under $mathbf{p}$. In this paper, we show that, WHP over $mathbf{p}$, we can efficiently reconstruct both $G$ and $mathbf{p}$ from $mathbf{l}$. In contrast to this average case complexity, this reconstruction problem is NP-HARD in the worst case. In fact, even the labeled version of this problem (reconstructing $mathbf{p}$ given both $G$ and $mathbf{l}$) is NP-HARD. We also show that our results stand in the presence of small amounts of error in $mathbf{l}$, and in the real setting with approximate length measurements. Our method is based on older ideas that apply lattice reduction to solve certain SUBSET-SUM problems, WHP. We also rely on an algorithm of Seymour that can efficiently reconstruct a graph given an independence oracle for its matroid.