Towards Stronger Counterexamples to the Log-Approximate-Rank Conjecture


Abstract in English

We give improved separations for the query complexity analogue of the log-approximate-rank conjecture i.e. we show that there are a plethora of total Boolean functions on $n$ input bits, each of which has approximate Fourier sparsity at most $O(n^3)$ and randomized parity decision tree complexity $Theta(n)$. This improves upon the recent work of Chattopadhyay, Mande and Sherif (JACM 20) both qualitatively (in terms of designing a large number of examples) and quantitatively (improving the gap from quartic to cubic). We leave open the problem of proving a randomized communication complexity lower bound for XOR compositions of our examples. A linear lower bound would lead to new and improved refutations of the log-approximate-rank conjecture. Moreover, if any of these compositions had even a sub-linear cost randomized communication protocol, it would demonstrate that randomized parity decision tree complexity does not lift to randomized communication complexity in general (with the XOR gadget).

Download