Do you want to publish a course? Click here

Player Identification in Hockey Broadcast Videos

132   0   0.0 ( 0 )
 Added by Alvin Chan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present a deep recurrent convolutional neural network (CNN) approach to solve the problem of hockey player identification in NHL broadcast videos. Player identification is a difficult computer vision problem mainly because of the players similar appearance, occlusion, and blurry facial and physical features. However, we can observe players jersey numbers over time by processing variable length image sequences of players (aka tracklets). We propose an end-to-end trainable ResNet+LSTM network, with a residual network (ResNet) base and a long short-term memory (LSTM) layer, to discover spatio-temporal features of jersey numbers over time and learn long-term dependencies. For this work, we created a new hockey player tracklet dataset that contains sequences of hockey player bounding boxes. Additionally, we employ a secondary 1-dimensional convolutional neural network classifier as a late score-level fusion method to classify the output of the ResNet+LSTM network. This achieves an overall player identification accuracy score over 87% on the test split of our new dataset.

rate research

Read More

In this work, an automatic and simple framework for hockey ice-rink localization from broadcast videos is introduced. First, video is broken into video-shots by a hierarchical partitioning of the video frames, and thresholding based on their histograms. To localize the frames on the ice-rink model, a ResNet18-based regressor is implemented and trained, which regresses to four control points on the model in a frame-by-frame fashion. This leads to the projection jittering problem in the video. To overcome this, in the inference phase, the trajectory of the control points on the ice-rink model are smoothed, for all the consecutive frames of a given video-shot, by convolving a Hann window with the achieved coordinates. Finally, the smoothed homography matrix is computed by using the direct linear transform on the four pairs of corresponding points. A hockey dataset for training and testing the regressor is gathered. The results show success of this simple and comprehensive procedure for localizing the hockey ice-rink and addressing the problem of jittering without affecting the accuracy of homography estimation.
Puck localization is an important problem in ice hockey video analytics useful for analyzing the game, determining play location, and assessing puck possession. The problem is challenging due to the small size of the puck, excessive motion blur due to high puck velocity and occlusions due to players and boards. In this paper, we introduce and implement a network for puck localization in broadcast hockey video. The network leverages expert NHL play-by-play annotations and uses temporal context to locate the puck. Player locations are incorporated into the network through an attention mechanism by encoding player positions with a Gaussian-based spatial heatmap drawn at player positions. Since event occurrence on the rink and puck location are related, we also perform event recognition by augmenting the puck localization network with an event recognition head and training the network through multi-task learning. Experimental results demonstrate that the network is able to localize the puck with an AUC of $73.1 %$ on the test set. The puck location can be inferred in 720p broadcast videos at $5$ frames per second. It is also demonstrated that multi-task learning with puck location improves event recognition accuracy.
Automatic analysis of the video is one of most complex problems in the fields of computer vision and machine learning. A significant part of this research deals with (human) activity recognition (HAR) since humans, and the activities that they perform, generate most of the video semantics. Video-based HAR has applications in various domains, but one of the most important and challenging is HAR in sports videos. Some of the major issues include high inter- and intra-class variations, large class imbalance, the presence of both group actions and single player actions, and recognizing simultaneous actions, i.e., the multi-label learning problem. Keeping in mind these challenges and the recent success of CNNs in solving various computer vision problems, in this work, we implement a 3D CNN based multi-label deep HAR system for multi-label class-imbalanced action recognition in hockey videos. We test our system for two different scenarios: an ensemble of $k$ binary networks vs. a single $k$-output network, on a publicly available dataset. We also compare our results with the system that was originally designed for the chosen dataset. Experimental results show that the proposed approach performs better than the existing solution.
Typical person re-identification frameworks search for k best matches in a gallery of images that are often collected in varying conditions. The gallery may contain image sequences when re-identification is done on videos. However, such a process is time consuming as re-identification has to be carried out multiple times. In this paper, we extract spatio-temporal sequences of frames (referred to as tubes) of moving persons and apply a multi-stage processing to match a given query tube with a gallery of stored tubes recorded through other cameras. Initially, we apply a binary classifier to remove noisy images from the input query tube. In the next step, we use a key-pose detection-based query minimization. This reduces the length of the query tube by removing redundant frames. Finally, a 3-stage hierarchical re-identification framework is used to rank the output tubes as per the matching scores. Experiments with publicly available video re-identification datasets reveal that our framework is better than state-of-the-art methods. It ranks the tubes with an increased CMC accuracy of 6-8% across multiple datasets. Also, our method significantly reduces the number of false positives. A new video re-identification dataset, named Tube-based Reidentification Video Dataset (TRiViD), has been prepared with an aim to help the re-identification research community
Short video applications like TikTok and Kwai have been a great hit recently. In order to meet the increasing demands and take full advantage of visual information in short videos, objects in each short video need to be located and analyzed as an upstream task. A question is thus raised -- how to improve the accuracy and robustness of object detection, tracking, and re-identification across tons of short videos with hundreds of categories and complicated visual effects (VFX). To this end, a system composed of a detection module, a tracking module and a generic object re-identification module, is proposed in this paper, which captures features of major objects from short videos. In particular, towards the high efficiency demands in practical short video application, a Temporal Information Fusion Network (TIFN) is proposed in the object detection module, which shows comparable accuracy and improved time efficiency to the state-of-the-art video object detector. Furthermore, in order to mitigate the fragmented issue of tracklets in short videos, a Cross-Layer Pointwise Siamese Network (CPSN) is proposed in the tracking module to enhance the robustness of the appearance model. Moreover, in order to evaluate the proposed system, two challenge datasets containing real-world short videos are built for video object trajectory extraction and generic object re-identification respectively. Overall, extensive experiments for each module and the whole system demonstrate the effectiveness and efficiency of our system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا