Do you want to publish a course? Click here

X-ray Flux and Spectral Variability of Blazar H 2356-309

58   0   0.0 ( 0 )
 Added by Haritma Gaur Dr
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of timing and spectral analysis of the blazar H 2356-309 using XMM-Newton observations. This blazar is observed during 13 June 2005-24 December 2013 in total nine observations. Five of the observations show moderate flux variability with amplitude 1.7-2.2 percent. We search for the intra-day variability timescales in these five light curves, but did not find in any of them. The fractional variability amplitude is generally lower in the soft bands than in the hard bands, which is attributed to the energy dependent synchrotron emission. Using the hardness ratio analysis, we search for the X-ray spectral variability along with flux variability in this source. However, we did not find any significant spectral variability on intra-day timescales. We also investigate the X-ray spectral curvature of blazar H 2356-309 and found that six of our observations are well described by the log parabolic model with alpha=1.99-2.15 and beta=0.03-0.18. Three of our observations are well described by power law model. The break energy of the X-ray spectra varies between 1.97-2.31 keV. We investigate the correlation between various parameters that are derived from log parabolic model and their implications are discussed.



rate research

Read More

AIMS: The properties of the broad-band emission from the high-frequency peaked BL Lac H 2356-309 (z=0.165) are investigated. METHODS: Very High Energy (VHE; E > 100 GeV) observations of H 2356-309 were performed with the High Energy Stereoscopic System (HESS) from 2004 through 2007. Simultaneous optical/UV and X-ray observations were made with the XMM-Newton satellite on June 12/13 and June 14/15, 2005. NRT radio observations were also contemporaneously performed in 2005. ATOM optical monitoring observations were also made in 2007. RESULTS: A strong VHE signal, ~13 sigma total, was detected by HESS after the four years HESS observations (116.8 hrs live time). The integral flux above 240 GeV is I(>240 GeV) = (3.06 +- 0.26 {stat} +- 0.61 {syst}) x 10^{-12} cm^{-2} s^{-1}, corresponding to ~1.6% of the flux observed from the Crab Nebula. A time-averaged energy spectrum is measured from 200 GeV to 2 TeV and is characterized by a power law (photon index of Gamma = 3.06 +- 0.15 {stat} +- 0.10 {syst}). Significant small-amplitude variations in the VHE flux from H 2356-309 are seen on time scales of months and years, but not on shorter time scales. No evidence for any variations in the VHE spectral slope are found within these data. The XMM-Newton X-ray measurements show a historically low X-ray state, characterized by a hard, broken-power-law spectrum on both nights. CONCLUSIONS: The broad-band spectral energy distribution (SED) of the blazar can be adequately fit using a simple one-zone synchrotron self-Compton (SSC) model. In the SSC scenario, higher VHE fluxes could be expected in the future since the observed X-ray flux is at a historically low level.
249 - Taotao Fang 2011
Since the launch of the Einstein X-ray Observatory in the 1970s, a number of broad absorption features have been reported in the X-ray spectra of BL Lac objects. These features are often interpreted as arising from high velocity outflows intrinsic to the BL Lac object, therefore providing important information about the inner environment around the central engine. However, such absorption features have not been observed more recently with high-resolution X-ray telescopes such as Chandra and XMM-Newton. In this paper, we report the detection of a transient X-ray absorption feature intrinsic to the BL Lac object H 2356-309 with the Chandra X-ray Telescope. This BL Lac object was observed during XMM cycle 7, Chandra cycle 8 and 10, as part of our campaign to investigate X-ray absorption produced by the warm-hot intergalactic medium (WHIM) residing in the foreground large scale superstructure. During one of the 80 ksec, Chandra cycle 10 observations, a transient absorption feature was detected at 3.3-sigma (or 99.9% confidence level, accounting for the number of trials), which we identify as the OVIII K-alpha line produced by an absorber intrinsic to the BL Lac object. None of the other 11 observations showed this line. We constrain the ionization parameter (25 <~ Xi <~ 40) and temperature (10^5 < T < 2.5 10^7 K) of the absorber. This absorber is likely produced by an outflow with a velocity up to 1,500 km/s. There is a suggestion of possible excess emission on the long-wavelength side of the absorption line; however, the derived properties of the emission material are very different from those of the absorption material, implying it is unlikely a typical P Cygni-type profile.
107 - Alok C. Gupta 2020
We reviewed X-ray flux and spectral variability properties studied to date by various X-ray satellites for Mrk 421 and PKS 2155-304, which are TeV emitting blazars. Mrk 421 and PKS 2155-304 are the most X-ray luminous blazars in the northern and southern hemispheres, respectively. Blazars show flux and spectral variabilities in the complete electromagnetic spectrum on diverse timescales ranging from a few minutes to hours, days, weeks, months and even several years. The flux and spectral variability on different timescales can be used to constrain the size of the emitting region, estimate the super massive black hole mass, find the dominant emission mechanism in the close vicinity of the super massive black hole, search for quasi-periodic oscillations in time series data and~several other physical parameters of blazars. Flux and spectral variability is also a dominant tool to explain jet as well as disk emission from blazars at different epochs of observations.
We study spectral variability of 11 ultraluminous X-ray sources (ULX) using archived XMM-Newton and Chandra observations. We use three models to describe the observed spectra: a power-law, a multi-colour disc (MCD) and a combination of these two models. We find that 7 ULXs show a correlation between the luminosity Lx and the photon index Gamma. Furthermore, 4 out of these 7 ULXs also show spectral pivoting in the observed energy band. We also find that two ULXs show an Lx-Gamma anti-correlation. The spectra of 4 ULXs in the sample can be adequately fitted with a MCD model. We compare these sources to known black hole binaries (BHB) and find that they follow similar paths in their luminosity-temperature diagrams. Finally we show that the `soft excess reported for many of these ULXs at about 0.2 keV seems to roughly follow a trend Lsoft propto T^{-3.5} when modelled with a power-law plus a `cool MCD model. This is contrary to the L propto T^4 relation that is expected from theory and what is seen for many accreting BHBs. The observed trend could instead arise from disc emission beamed by an outflowing wind around a about 10 solar mass black hole.
Fifteen ROSAT PSPC observations available in the public archive are analyzed in order to study time and spectral variability of the 12 EMSS AGN detected by ROSAT with more than 2000 net counts. Time variability was investigated on 13 different time scales, ranging from 400 s to 1 year. Of the 12 sources analyzed, only two do not show a significant variability on any time scale. On short time scale about 20 percent of AGN are seen as variable sources while on time scale greater than 100.000 s the fraction becomes greater than 50 percent. However one should bare in mind that the visibility function for variability is far from being uniform and that small amplitude variations can be detected more often on long time scale than on short time scale. Spectral variability was detected in only two sources. MS1158.6-0323 shows an hardening of the spectrum with increasing intensity while MS2254.9-3712 shows a softening of the spectrum with increasing intensity. Finally, for one source (MS1416.3-1257), the observed variability is not due to an intrinsic flux variation but, instead, to a variation in the column density along the line of sight. Since this variability has been observed on a time scale of about 3.9 days, it is probably associated to the broad line clouds.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا