No Arabic abstract
Hamiltonians describing the relativistic quantum dynamics of a particle with an arbitrary spin are shown to exhibit a supersymmetric structure when the even and odd elements of the Hamiltonian commute. For such supersymmetric Hamiltonians an exact Foldy-Wouthuysen transformation exits which brings it into a block-diagonal form separating the positive and negative energy subspaces. Here the supercharges transform between energy eigenstates of positive and negative energy. The relativistic dynamics of a charged particle in a magnetic field is considered for the case of a scalar (spin-zero) boson obeying the Klein-Gordan equation, a Dirac (spin one-half) fermion and a vector (spin-one) boson characterised by the Proca equation.
The resolvent of supersymmetric Dirac Hamiltonian is studied in detail. Due to supersymmetry the squared Dirac Hamiltonian becomes block-diagonal whose elements are in essence non-relativistic Schrodinger-type Hamiltonians. This enables us to find a Feynman-type path-integral representation of the resulting Greens functions. In addition, we are also able to express the spectral properties of the supersymmetric Dirac Hamiltonian in terms of those of the non-relativistic Schrodinger Hamiltonians. The methods are explicitly applied to the free Dirac Hamiltonian, the so-called Dirac oscillator and a generalization of it. The general approach is applicable to systems with good and broken supersymmetry.
For an arbitrary possibly non-Hermitian matrix Hamiltonian H, that might involve exceptional points, we construct an appropriate parameter space M and the lines bundle L^n over M such that the adiabatic geometric phases associated with the eigenstates of the initial Hamiltonian coincide with the holonomies of L^n. We examine the case of 2 x 2 matrix Hamiltonians in detail and show that, contrary to claims made in some recent publications, geometric phases arising from encircling exceptional points are generally geometrical and not topological in nature.
The non-relativistic hydrogen atom enjoys an accidental $SO(4)$ symmetry, that enlarges the rotational $SO(3)$ symmetry, by extending the angular momentum algebra with the Runge-Lenz vector. In the relativistic hydrogen atom the accidental symmetry is partially lifted. Due to the Johnson-Lippmann operator, which commutes with the Dirac Hamiltonian, some degeneracy remains. When the non-relativistic hydrogen atom is put in a spherical cavity of radius $R$ with perfectly reflecting Robin boundary conditions, characterized by a self-adjoint extension parameter $gamma$, in general the accidental $SO(4)$ symmetry is lifted. However, for $R = (l+1)(l+2) a$ (where $a$ is the Bohr radius and $l$ is the orbital angular momentum) some degeneracy remains when $gamma = infty$ or $gamma = frac{2}{R}$. In the relativistic case, we consider the most general spherically and parity invariant boundary condition, which is characterized by a self-adjoint extension parameter. In this case, the remnant accidental symmetry is always lifted in a finite volume. We also investigate the accidental symmetry in the context of the Pauli equation, which sheds light on the proper non-relativistic treatment including spin. In that case, again some degeneracy remains for specific values of $R$ and $gamma$.
We consider relativistic coherent states for a spin-0 charged particle that satisfy the next additional requirements: (i) the expected values of the standard coordinate and momentum operators are uniquely related to the real and imaginary parts of the coherent state parameter; (ii) these states contain only one charge component. Three cases are considered: free particle, relativistic rotator, and particle in a constant homogeneous magnetic field. For the rotational motion of the two latter cases, such a description leads to the appearance of the so-called nonlinear coherent states.
We study several formulations of zero-mass relativistic equations, stressing similarities between different frameworks. It is shown that all these massless wave equations have fermionic as well as bosonic solutions.