Inertial migration of oblate spheroids in a plane channel


Abstract in English

We discuss an inertial migration of oblate spheroids in a plane channel, where steady laminar flow is generated by a pressure gradient. Our lattice Boltzmann simulations show that spheroids orient in the flow, so that their minor axis coincides with the vorticity direction (a log-rolling motion). Interestingly, for spheroids of moderate aspect ratios, the equilibrium positions relative to the channel walls depend only on their equatorial radius $a$. By analysing the inertial lift force we argue that this force is proportional to $a^3b$, where $b$ is the polar radius, and conclude that the dimensionless lift coefficient of the oblate spheroid does not depend on $b$, and is equal to that of the sphere of radius $a$.

Download