Do you want to publish a course? Click here

Strong Interaction between Surface Plasmons and Chiral Molecules

138   0   0.0 ( 0 )
 Added by Yurui Fang PhD
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In plasmonic chirality, the phenomenon of circular dichroism for achiral nanoparitcles caused by Coulomb interaction between metal nanoparticles (NPs) and chiral molecules have been studied. At the same time, under the resonance condition, the dye molecules and metal NPs will produce huge Rabi splitting due to strong coupling. If the chiral molecules are at the resonance of the plasmon, what will happen for the strong interaction between the plasmon and molecules with chirality introduced? In this paper, we investigate a spherical core-shell model and analyze its spectral phenomena under the excitation of circularly polarized light (CPL). Based on Coulomb interaction between NPs and chiral molecules, we will show how the various factors affect the strong coupling. We have obtained three mechanisms for the interaction between plasmons and chiral molecules: strong coupling (Rabi splitting up to 243mev), enhanced absorption and induced transparency. The interaction between CPL and chiral molecules with the opposite chirality to CPL is stronger than that of the same chirality, and the line width of the two peaks is closer than that of the same chirality, which shows that for the Rabi splitting with chirality, there are deeper mechanisms for the interaction. This result will be helpful for further research on the interaction between plasmon and molecules with chirality.



rate research

Read More

129 - J. Yang , G. W. Lin , Y. P. Niu 2014
The spectrum width can be narrowed to a certain degree by decreasing the coupling strength for the two-level emitter coupled to the propagating surface plasmon. But the width can not be narrowed any further because of the loss of the photon out of system by spontaneous emission from the emitter. Here we propose a new scheme to construct a narrow-band source via a one-dimensional waveguide coupling with a three-level emitter. It is shown that the reflective spectrum width can be narrowed avoiding the impact of the loss. This approach opens up the possibility of plasmonic ultranarrow single-photon source.
In this paper the formation mechanisms of the femtosecond laser-induced periodic surface structures (LIPSS) are discussed. One of the most frequently-used theories explains the structures by interference between the incident laser beam and surface plasmon-polariton waves. The latter is most commonly attributed to the coupling of the incident laser light to the surface roughness. We demonstrate that this excitation mechanism of surface plasmons contradicts to the results of laser-ablation experiments. As an alternative approach to the excitation of LIPSS we analyse development of hydrodynamic instabilities in the melt layer.
A molecular wire containing an emitting molecular center is controllably suspended between the plasmonic electrodes of a cryogenic scanning tunneling microscope. Passing current through this circuit generates an ultra narrow-line emission at an energy of ? 1.5 eV which is assigned to the fluorescence of the molecular center. Control over the linewidth is obtained by progressively detaching the emitting unit from the surface. The recorded spectra also reveal several vibronic peaks of low intensities that can be viewed as a fingerprint of the emitter. Surface-plasmon localized at the tip-sample interface are shown to play a major role on both excitation and emission of the molecular excitons.
160 - O. Mollet , A. Cuche , A. Drezet 2011
Leakage-radiation microscopy of a thin gold film demonstrates the ability of an ensemble of fluorescent diamond nanoparticles attached onto the apex of an optical tip to serve as an efficient near-field surface-plasmon polariton launcher. The implementation of the nanodiamond-based tip in a near-field scanning optical microscope will allow for an accurate control on the launching position, thereby opening the way to scanning plasmonics.
Strong interactions between surface plasmons in ultra-compact nanocavities and excitons in two dimensional materials have attracted wide interests for its prospective realization of polariton devices at room temperature. Here, we propose a continuous transition from weak coupling to strong coupling between excitons in MoS2 monolayer and highly localized plasmons in ultra-compact nanoantenna. The nanoantenna is assembled by a silver nanocube positioned over a gold film and separated by a dielectric spacer layer. We observed a 1570-fold enhancement in the photoluminescence at weak coupling regime in hybrid nanocavities with thick spacer layers. The interaction between excitons and plasmons is then directly prompted to strong coupling regime by shrinking down the thickness of spacer layer. Room temperature formation of polaritons with Rabi splitting up to 190 meV was observed, which is the largest plasmon-exciton Rabi splitting reported in two dimensional materials. Numerical calculations quantified the relation between coupling strength, local density of states and spacer thickness, and revealed the transition between weak coupling and strong coupling in nanocavities. The findings in this work offer a guideline for feasible designs of plasmon-exciton interaction systems with gap plasmonic cavities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا