No Arabic abstract
We present a public catalog of transients from the Zwicky Transient Facility (ZTF) Bright Transient Survey (BTS), a magnitude-limited (m<19 mag in either the g or r filter) survey for extragalactic transients in the ZTF public stream. We introduce cuts on survey coverage, sky visibility around peak light, and other properties unconnected to the nature of the transient, and show that the resulting statistical sample is spectroscopically 97% complete at <18 mag, 93% complete at <18.5 mag, and 75% complete at <19 mag. We summarize the fundamental properties of this population, identifying distinct duration-luminosity correlations in a variety of supernova (SN) classes and associating the majority of fast optical transients with well-established spectroscopic SN types (primarily SN Ibn and II/IIb). We measure the Type Ia SN and core-collapse (CC) SN rates and luminosity functions, which show good consistency with recent work. About 7% of CC SNe explode in very low-luminosity galaxies (M_i > -16 mag), 10% in red-sequence galaxies, and 1% in massive ellipticals. We find no significant difference in the luminosity or color distributions between the host galaxies of Type II and Type Ib/c supernovae, suggesting that line-driven wind stripping does not play a major role in the loss of the hydrogen envelope from their progenitors. Future large-scale classification efforts with ZTF and other wide-area surveys will provide high-quality measurements of the rates, properties, and environments of all known types of optical transients and limits on the existence of theoretically predicted but as of yet unobserved explosions.
The Zwicky Transient Facility (ZTF) is performing a three-day cadence survey of the visible Northern sky (~3$pi$). The transient candidates found in this survey are announced via public alerts. As a supplementary product ZTF is also conducting a large spectroscopic campaign: the ZTF Bright Transient Survey (BTS). The goal of the BTS is to spectroscopically classify all extragalactic transients brighter than 18.5 mag at peak brightness and immediately announce those classifications to the public. Extragalactic discoveries from ZTF are predominantly Supernovae (SNe). The BTS is the largest flux-limited SN survey to date. Here we present a catalog of the761 SNe that were classified during the first nine months of the survey (2018 Apr. 1 to 2018 Dec. 31). The BTS SN catalog contains redshifts based on SN template matching and spectroscopic host galaxy redshifts when available. Based on this data we perform an analysis of the redshift completeness of local galaxy catalogs, dubbed as the Redshift Completeness Fraction (RCF; the number of SN host galaxies with known spectroscopic redshift prior to SN discovery divided by the total number of SN hosts). In total, we identify the host galaxies of 512 Type Ia supernovae, 227 of which have known spectroscopic redshifts, yielding an RCF estimate of $44% pm1%$. We find a steady decrease in the RCF with increasing distance in the local universe. For z<0.05, or ~200 Mpc, we find RCF=0.6, which has important ramifications when searching for multimessenger astronomical events. Prospects for dramatically increasing the RCF are limited to new multi-fiber spectroscopic instruments, or wide-field narrowband surveys. We find that existing galaxy redshift catalogs are only $50%$ complete at $rapprox16.9$ mag. Pushing this limit several magnitudes deeper will pay huge dividends when searching for electromagnetic counterparts to gravitational wave events.
The Zwicky Transient Facility (ZTF), a public-private enterprise, is a new time domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg$^2$ field of view and 8 second readout time. It is well positioned in the development of time domain astronomy, offering operations at 10% of the scale and style of the Large Synoptic Survey Telescope (LSST) with a single 1-m class survey telescope. The public surveys will cover the observable northern sky every three nights in g and r filters and the visible Galactic plane every night in g and r. Alerts generated by these surveys are sent in real time to brokers. A consortium of universities which provided funding (partnership) are undertaking several boutique surveys. The combination of these surveys producing one million alerts per night allows for exploration of transient and variable astrophysical phenomena brighter than r $sim$ 20.5 on timescales of minutes to years. We describe the primary science objectives driving ZTF including the physics of supernovae and relativistic explosions, multi-messenger astrophysics, supernova cosmology, active galactic nuclei and tidal disruption events, stellar variability, and Solar System objects.
The Zwicky Transient Facility (ZTF) Observing System (OS) is the data collector for the ZTF project to study astrophysical phenomena in the time domain. ZTF OS is based upon the 48-inch aperture Schmidt-type design Samuel Oschin Telescope at the Palomar Observatory in Southern California. It incorporates new telescope aspheric corrector optics, dome and telescope drives, a large-format exposure shutter, a flat-field illumination system, a robotic bandpass filter exchanger, and the key element: a new 47-square-degree, 600 megapixel cryogenic CCD mosaic science camera, along with supporting equipment. The OS collects and delivers digitized survey data to the ZTF Data System (DS). Here, we describe the ZTF OS design, optical implementation, delivered image quality, detector performance, and robotic survey efficiency.
When planning a survey for astronomical transients, many factors such as cadence, filter choice, sky coverage, and depth of observations need to be balanced in order to optimize the scientific gain of the survey. Here we present a software package called $texttt{simsurvey}$ for simulating the supernova lightcurves that are expected based on a survey strategy, which can then be used to determine the potential for discoveries of each strategy in question. The code is set up in a modular fashion that allows easy modification of small details of the survey and enables the user to adapt it to any survey design and transient template that they wish to use in planning their survey. As an example of its utility, we use $texttt{simsurvey}$ to simulate the lightcurve of several types of supernovae that the recently started Zwicky Transient Facility (ZTF) is expected to find and compare the results to the discoveries made during its early operations. We conclude that ZTF will find thousands of bright supernovae per year, of which about 10 could potentially be found with two days of explosion. Over the course of three years the survey will obtain lightcurves of about 1800 type Ia supernovae with $z < 0.1$ that can be used as distance indicators in cosmology if they are spectroscopically classified using additional telescopes. In a comparison to detections from the ZTF public survey, we found good agreement with the numbers of detections expected from the simulations.
The Zwicky Transient Facility (ZTF) survey generates real-time alerts for optical transients, variables, and moving objects discovered in its wide-field survey. We describe the ZTF alert stream distribution and processing (filtering) system. The system uses existing open-source technologies developed in industry: Kafka, a real-time streaming platform, and Avro, a binary serialization format. The technologies used in this system provide a number of advantages for the ZTF use case, including (1) built-in replication, scalability, and stream rewind for the distribution mechanism; (2) structured messages with strictly enforced schemas and dynamic typing for fast parsing; and (3) a Python-based stream processing interface that is similar to batch for a familiar and user-friendly plug-in filter system, all in a modular, primarily containerized system. The production deployment has successfully supported streaming up to 1.2 million alerts or roughly 70 GB of data per night, with each alert available to a consumer within about 10 s of alert candidate production. Data transfer rates of about 80,000 alerts/minute have been observed. In this paper, we discuss this alert distribution and processing system, the design motivations for the technology choices for the framework, performance in production, and how this system may be generally suitable for other alert stream use cases, including the upcoming Large Synoptic Survey Telescope.