No Arabic abstract
Chiral edge states are a hallmark feature of two-dimensional topological materials. Such states must propagate along the edges of the bulk either clockwise or counterclockwise, and thus produce oppositely propagating edge states along the two parallel edges of a strip sample. However, recent theories have predicted a counterintuitive picture, where the two edge states at the two parallel strip edges can propagate in the same direction; these anomalous topological edge states are named as antichiral edge states. Here we report the experimental observation of antichiral edge states in a gyromagnetic photonic crystal. The crystal consists of gyromagnetic cylinders in a honeycomb lattice, with the two triangular sublattices magnetically biased in opposite directions. With microwave measurement, unique properties of antichiral edge states have been observed directly, which include the titled dispersion, the chiral-like robust propagation in samples with certain shapes, and the scattering into backward bulk states at certain terminations. These results extend and supplement the current understanding of chiral edge states.
We constructed an electrical circuit to realize a modified Haldane lattice exhibiting the unusual phenomenon of antichiral edge states. The circuit consists of a network of inductors and capacitors with interconnections reproducing the effects of a magnetic vector potential. The next nearest neighbor hoppings are configured differently from the standard Haldane model, and as predicted by earlier theoretical studies, this gives rise to antichiral edge states that propagate in the same direction on opposite edges and co-exist with bulk states at the same frequency. Using pickup coils to measure the voltage distributions in the circuit, we experimentally verify the key features of the modified Haldane lattice, including the group velocities of the antichiral edge states.
Topological defects (TDs) in crystal lattices are elementary lattice imperfections that cannot be removed by local perturbations, due to their real space topology. We show that adding TDs into a valley photonic crystal generates a lattice disclination that acts like a domain wall and hosts topological edge states. The disclination functions as a freeform waveguide connecting a pair of TDs of opposite topological charge. This interplay between the real-space topology of lattice defects and band topology provides a novel scheme to implement large-scale photonic structures with complex arrangements of robust topological waveguides and resonators.
The topological band theory predicts that bulk materials with nontrivial topological phases support topological edge states. This phenomenon is universal for various wave systems and has been widely observed for electromagnetic and acoustic waves. Here, we extend the notion of band topology from wave to diffusion dynamics. Unlike the wave systems that are usually Hermitian, the diffusion systems are anti-Hermitian with purely imaginary eigenvalues corresponding to decay rates. Via direct probe of the temperature diffusion, we experimentally retrieve the Hamiltonian of a thermal lattice, and observe the emergence of topological edge decays within the gap of bulk decays. Our results show that such edge states exhibit robust decay rates, which are topologically protected against disorders. This work constitutes a thermal analogue of topological insulators and paves the way to exploring defect-immune heat dissipation.
We report the realization of a synthetic magnetic field for photons and polaritons in a honeycomb lattice of coupled semiconductor micropillars. A strong synthetic field is induced in both the s and p orbital bands by engineering a uniaxial hopping gradient in the lattice, giving rise to the formation of Landau levels at the Dirac points. We provide direct evidence of the sublattice symmetry breaking of the lowest-order Landau level wavefunction, a distinctive feature of synthetic magnetic fields. Our realization implements helical edge states in the gap between n=0 and n=1 Landau levels, experimentally demonstrating a novel way of engineering propagating edge states in photonic lattices. In light of recent advances in the enhancement of polariton-polariton nonlinearities, the Landau levels reported here are promising for the study of the interplay between pseudomagnetism and interactions in a photonic system.
The non-Hermitian skin effect (NHSE) in non-Hermitian lattice systems depicts the exponential localization of eigenstates at systems boundaries. It has led to a number of counter-intuitive phenomena and challenged our understanding of bulk-boundary correspondence in topological systems. This work aims to investigate how the NHSE localization and topological localization of in-gap edge states compete with each other, with several representative static and periodically driven 1D models, whose topological properties are protected by different symmetries. The emerging insight is that at critical system parameters, even topologically protected edge states can be perfectly delocalized. In particular, it is discovered that this intriguing delocalization occurs if the real spectrum of the systems edge states falls on the same systems complex spectral loop obtained under the periodic boundary condition. We have also performed sample numerical simulation to show that such delocalized topological edge states can be safely reconstructed from time-evolving states. Possible applications of delocalized topological edge states are also briefly discussed.