Do you want to publish a course? Click here

The Hyper-Kamiokande Experiment -- Snowmass LOI

134   0   0.0 ( 0 )
 Added by Carsten Rott
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Hyper-Kamiokande is the next generation underground water Cherenkov detector that builds on the highly successful Super-Kamiokande experiment. The detector which has an 8.4~times larger effective volume than its predecessor will be located along the T2K neutrino beamline and utilize an upgraded J-PARC beam with 2.6~times beam power. Hyper-Ks low energy threshold combined with the very large fiducial volume make the detector unique, that is expected to acquire an unprecedented exposure of 3.8~Mton$cdot$year over a period of 20~years of operation. Hyper-Kamiokande combines an extremely diverse science program including nucleon decays, long-baseline neutrino oscillations, atmospheric neutrinos, and neutrinos from astrophysical origins. The scientific scope of this program is highly complementary to liquid-argon detectors for example in sensitivity to nucleon decay channels or supernova detection modes. Hyper-Kamiokande construction has started in early 2020 and the experiment is expected to start operations in 2027. The Hyper-Kamiokande collaboration is presently being formed amongst groups from 19 countries including the United States, whose community has a long history of making significant contributions to the neutrino physics program in Japan. US physicists have played leading roles in the Kamiokande, Super-Kamiokande, EGADS, K2K, and T2K programs.



rate research

Read More

76 - Yury Kudenko 2020
A next generation water Cherenkov detector Hyper-Kamiokande to be built in Japan is described. The main goals of this project include a sensitive measurement of CP violation in neutrino oscillations, a search for proton decay and study of solar, atmospherics and astrophysical neutrinos. Key features of the Hyper-Kamiokande detector are described. The main emphasis is put on large photosensors. The recent progress in the development of near neutrino detectors is also presented.
Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of $CP$ asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW $times$ 10$^7$ sec integrated proton beam power (corresponding to $1.56times10^{22}$ protons on target with a 30 GeV proton beam) to a $2.5$-degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the $CP$ phase $delta_{CP}$ can be determined to better than 19 degrees for all possible values of $delta_{CP}$, and $CP$ violation can be established with a statistical significance of more than $3,sigma$ ($5,sigma$) for $76%$ ($58%$) of the $delta_{CP}$ parameter space.
On the strength of a double Nobel prize winning experiment (Super)Kamiokande and an extremely successful long baseline neutrino programme, the third generation Water Cherenkov detector, Hyper-Kamiokande, is being developed by an international collaboration as a leading worldwide experiment based in Japan. The Hyper-Kamiokande detector will be hosted in the Tochibora mine, about 295 km away from the J-PARC proton accelerator research complex in Tokai, Japan. The currently existing accelerator will be steadily upgraded to reach a MW beam by the start of the experiment. A suite of near detectors will be vital to constrain the beam for neutrino oscillation measurements. A new cavern will be excavated at the Tochibora mine to host the detector. The experiment will be the largest underground water Cherenkov detector in the world and will be instrumented with new technology photosensors, faster and with higher quantum efficiency than the ones in Super-Kamiokande. The science that will be developed will be able to shape the future theoretical framework and generations of experiments. Hyper-Kamiokande will be able to measure with the highest precision the leptonic CP violation that could explain the baryon asymmetry in the Universe. The experiment also has a demonstrated excellent capability to search for proton decay, providing a significant improvement in discovery sensitivity over current searches for the proton lifetime. The atmospheric neutrinos will allow to determine the neutrino mass ordering and, together with the beam, able to precisely test the three-flavour neutrino oscillation paradigm and search for new phenomena. A strong astrophysical programme will be carried out at the experiment that will detect supernova neutrinos and will measure precisely solar neutrino oscillation.
In neutrino interactions with nucleons and nuclei, Shallow Inelastic Scattering (SIS) refers to processes, dominated by non-resonant contributions, in the kinematic region where $Q^2$ is small and the invariant mass of the hadronic system, $W$, is above the pion production threshold. The extremely rich science of this complex region, poorly understood both theoretically and experimentally, encompasses the transition from interactions described in terms of hadronic degrees of freedom to interactions with quarks and gluons described by perturbative QCD. Since a large fraction of events in NOvA and DUNE, and in atmospheric neutrino measurements such as IceCube-Upgrade, KM3NeT, Super- and Hyper-Kamiokande, are from this SIS region, there is a definite need to improve our knowledge of this physics. This LoI summarizes the current understandings of the SIS physics and a series of proposals for the path to forward.
The T2K experiment is a long-baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle {theta}_{13} by observing { u}_e appearance in a { u}_{mu} beam. It also aims to make a precision measurement of the known oscillation parameters, {Delta}m^{2}_{23} and sin^{2} 2{theta}_{23}, via { u}_{mu} disappearance studies. Other goals of the experiment include various neutrino cross section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا